Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Alexander Alekhin c1db75e0c7 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 6 years ago
..
face_detector Update face detection network in samples 6 years ago
CMakeLists.txt Install data for samples to correct directories, do not download face_detector models in cmake 6 years ago
README.md Merge remote-tracking branch 'upstream/3.4' into merge-3.4 7 years ago
classification.cpp core: repair CV_Assert() messages 6 years ago
classification.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
colorization.cpp Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
colorization.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
custom_layers.hpp core: repair CV_Assert() messages 6 years ago
edge_detection.py Custom deep learning layers in Python 7 years ago
fast_neural_style.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
js_face_recognition.html documentation: avoid links to 'master' branch from 3.4 maintenance branch (2) 7 years ago
mask_rcnn.py Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn 6 years ago
mobilenet_ssd_accuracy.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
object_detection.cpp dnn: fix typo in object_detection.cpp sample 6 years ago
object_detection.py Faster-RCNN anf RFCN models on CPU using Intel's Inference Engine backend. 6 years ago
openpose.cpp select the device (video capture) 7 years ago
openpose.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
segmentation.cpp core: repair CV_Assert() messages 6 years ago
segmentation.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 7 years ago
text_detection.cpp core: repair CV_Assert() messages 6 years ago
tf_text_graph_common.py Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn 6 years ago
tf_text_graph_faster_rcnn.py Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn 6 years ago
tf_text_graph_mask_rcnn.py Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn 6 years ago
tf_text_graph_ssd.py Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn 6 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Object detection

Model Scale Size WxH Mean subtraction Channels order
MobileNet-SSD, Caffe 0.00784 (2/255) 300x300 127.5 127.5 127.5 BGR
OpenCV face detector 1.0 300x300 104 177 123 BGR
SSDs from TensorFlow 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB
YOLO 0.00392 (1/255) 416x416 0 0 0 RGB
VGG16-SSD 1.0 300x300 104 117 123 BGR
Faster-RCNN 1.0 800x600 102.9801 115.9465 122.7717 BGR
R-FCN 1.0 800x600 102.9801 115.9465 122.7717 BGR
Faster-RCNN, ResNet backbone 1.0 300x300 103.939 116.779 123.68 RGB
Faster-RCNN, InceptionV2 backbone 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

Classification

Model Scale Size WxH Mean subtraction Channels order
GoogLeNet 1.0 224x224 104 117 123 BGR
SqueezeNet 1.0 227x227 0 0 0 BGR

Semantic segmentation

Model Scale Size WxH Mean subtraction Channels order
ENet 0.00392 (1/255) 1024x512 0 0 0 RGB
FCN8s 1.0 500x500 0 0 0 BGR

References