Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

107 lines
2.4 KiB

import sys
import cv2 as cv
import numpy as np
# Global Variables
DELAY_CAPTION = 1500
DELAY_BLUR = 100
MAX_KERNEL_LENGTH = 31
src = None
dst = None
window_name = 'Smoothing Demo'
def main(argv):
cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)
# Load the source image
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg"
global src
src = cv.imread(imageName, 1)
if src is None:
print ('Error opening image')
print ('Usage: smoothing.py [image_name -- default ../data/lena.jpg] \n')
return -1
if display_caption('Original Image') != 0:
return 0
global dst
dst = np.copy(src)
if display_dst(DELAY_CAPTION) != 0:
return 0
# Applying Homogeneous blur
if display_caption('Homogeneous Blur') != 0:
return 0
## [blur]
for i in range(1, MAX_KERNEL_LENGTH, 2):
dst = cv.blur(src, (i, i))
if display_dst(DELAY_BLUR) != 0:
return 0
## [blur]
# Applying Gaussian blur
if display_caption('Gaussian Blur') != 0:
return 0
## [gaussianblur]
for i in range(1, MAX_KERNEL_LENGTH, 2):
dst = cv.GaussianBlur(src, (i, i), 0)
if display_dst(DELAY_BLUR) != 0:
return 0
## [gaussianblur]
# Applying Median blur
if display_caption('Median Blur') != 0:
return 0
## [medianblur]
for i in range(1, MAX_KERNEL_LENGTH, 2):
dst = cv.medianBlur(src, i)
if display_dst(DELAY_BLUR) != 0:
return 0
## [medianblur]
# Applying Bilateral Filter
if display_caption('Bilateral Blur') != 0:
return 0
## [bilateralfilter]
# Remember, bilateral is a bit slow, so as value go higher, it takes long time
for i in range(1, MAX_KERNEL_LENGTH, 2):
dst = cv.bilateralFilter(src, i, i * 2, i / 2)
if display_dst(DELAY_BLUR) != 0:
return 0
## [bilateralfilter]
# Done
display_caption('Done!')
return 0
def display_caption(caption):
global dst
dst = np.zeros(src.shape, src.dtype)
rows, cols, _ch = src.shape
cv.putText(dst, caption,
(int(cols / 4), int(rows / 2)),
cv.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255))
return display_dst(DELAY_CAPTION)
def display_dst(delay):
cv.imshow(window_name, dst)
c = cv.waitKey(delay)
if c >= 0 : return -1
return 0
if __name__ == "__main__":
main(sys.argv[1:])