Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

528 lines
15 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace {
//#define DUMP
/////////////////////////////////////////////////////////////////////////////////////////////////
// BroxOpticalFlow
#define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin"
#define BROX_OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/brox_optical_flow_cc20.bin"
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(BroxOpticalFlow, Regression)
{
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
ASSERT_FALSE(frame1.empty());
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
brox(loadMat(frame0), loadMat(frame1), u, v);
#ifndef DUMP
std::string fname(cvtest::TS::ptr()->get_data_path());
if (devInfo.majorVersion() >= 2)
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
else
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
std::ifstream f(fname.c_str(), std::ios_base::binary);
int rows, cols;
f.read((char*)&rows, sizeof(rows));
f.read((char*)&cols, sizeof(cols));
cv::Mat u_gold(rows, cols, CV_32FC1);
for (int i = 0; i < u_gold.rows; ++i)
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
cv::Mat v_gold(rows, cols, CV_32FC1);
for (int i = 0; i < v_gold.rows; ++i)
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
EXPECT_MAT_NEAR(u_gold, u, 0);
EXPECT_MAT_NEAR(v_gold, v, 0);
#else
std::string fname(cvtest::TS::ptr()->get_data_path());
if (devInfo.majorVersion() >= 2)
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
else
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
std::ofstream f(fname.c_str(), std::ios_base::binary);
f.write((char*)&u.rows, sizeof(u.rows));
f.write((char*)&u.cols, sizeof(u.cols));
cv::Mat h_u(u);
cv::Mat h_v(v);
for (int i = 0; i < u.rows; ++i)
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
for (int i = 0; i < v.rows; ++i)
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
#endif
}
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
/////////////////////////////////////////////////////////////////////////////////////////////////
// GoodFeaturesToTrack
IMPLEMENT_PARAM_CLASS(MinDistance, double)
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
{
cv::gpu::DeviceInfo devInfo;
double minDistance;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
minDistance = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
int maxCorners = 1000;
double qualityLevel = 0.01;
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
{
try
{
cv::gpu::GpuMat d_pts;
detector(loadMat(image), d_pts);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsNotImplemented, e.code);
}
}
else
{
cv::gpu::GpuMat d_pts;
detector(loadMat(image), d_pts);
std::vector<cv::Point2f> pts(d_pts.cols);
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
d_pts.download(pts_mat);
std::vector<cv::Point2f> pts_gold;
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
ASSERT_EQ(pts_gold.size(), pts.size());
size_t mistmatch = 0;
for (size_t i = 0; i < pts.size(); ++i)
{
cv::Point2i a = pts_gold[i];
cv::Point2i b = pts[i];
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
if (!eq)
++mistmatch;
}
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
ASSERT_LE(bad_ratio, 0.01);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
ALL_DEVICES,
testing::Values(MinDistance(0.0), MinDistance(3.0))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// PyrLKOpticalFlow
IMPLEMENT_PARAM_CLASS(UseGray, bool)
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
{
cv::gpu::DeviceInfo devInfo;
bool useGray;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useGray = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(PyrLKOpticalFlow, Sparse)
{
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
std::vector<cv::Point2f> pts;
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
cv::gpu::GpuMat d_pts;
cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void*)&pts[0]);
d_pts.upload(pts_mat);
cv::gpu::PyrLKOpticalFlow pyrLK;
cv::gpu::GpuMat d_nextPts;
cv::gpu::GpuMat d_status;
cv::gpu::GpuMat d_err;
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
d_nextPts.download(nextPts_mat);
std::vector<unsigned char> status(d_status.cols);
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
d_status.download(status_mat);
std::vector<float> err(d_err.cols);
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
d_err.download(err_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
std::vector<float> err_gold;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold);
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
ASSERT_EQ(status_gold.size(), status.size());
ASSERT_EQ(err_gold.size(), err.size());
size_t mistmatch = 0;
for (size_t i = 0; i < nextPts.size(); ++i)
{
if (status[i] != status_gold[i])
{
++mistmatch;
continue;
}
if (status[i])
{
cv::Point2i a = nextPts[i];
cv::Point2i b = nextPts_gold[i];
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
float errdiff = std::abs(err[i] - err_gold[i]);
if (!eq || errdiff > 1e-1)
++mistmatch;
}
}
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
ASSERT_LE(bad_ratio, 0.01);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(UseGray(true), UseGray(false))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// FarnebackOpticalFlow
IMPLEMENT_PARAM_CLASS(PyrScale, double)
IMPLEMENT_PARAM_CLASS(PolyN, int)
CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
{
cv::gpu::DeviceInfo devInfo;
double pyrScale;
int polyN;
int flags;
bool useInitFlow;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
pyrScale = GET_PARAM(1);
polyN = GET_PARAM(2);
flags = GET_PARAM(3);
useInitFlow = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(FarnebackOpticalFlow, Accuracy)
{
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
double polySigma = polyN <= 5 ? 1.1 : 1.5;
cv::gpu::FarnebackOpticalFlow calc;
calc.pyrScale = pyrScale;
calc.polyN = polyN;
calc.polySigma = polySigma;
calc.flags = flags;
cv::gpu::GpuMat d_flowx, d_flowy;
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
cv::Mat flow;
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
}
if (useInitFlow)
{
calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
}
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
calc.numIters, calc.polyN, calc.polySigma, calc.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
testing::Values(PolyN(5), PolyN(7)),
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
testing::Values(UseInitFlow(false), UseInitFlow(true))));
struct OpticalFlowNan : public BroxOpticalFlow {};
TEST_P(OpticalFlowNan, Regression)
{
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
ASSERT_FALSE(frame0.empty());
cv::Mat r_frame0, r_frame1;
cv::resize(frame0, r_frame0, cv::Size(1380,1000));
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
ASSERT_FALSE(frame1.empty());
cv::resize(frame1, r_frame1, cv::Size(1380,1000));
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
cv::Mat h_u, h_v;
u.download(h_u);
v.download(h_v);
EXPECT_TRUE(cv::checkRange(h_u));
EXPECT_TRUE(cv::checkRange(h_v));
};
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowNan, ALL_DEVICES);
/////////////////////////////////////////////////////////////////////////////////////////////////
// VideoWriter
#ifdef WIN32
PARAM_TEST_CASE(VideoWriter, cv::gpu::DeviceInfo, std::string)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
std::string outputFile;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
inputFile = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile;
outputFile = inputFile.substr(0, inputFile.find('.')) + "_test.avi";
}
};
TEST_P(VideoWriter, Regression)
{
const double FPS = 25.0;
cv::VideoCapture reader(inputFile);
ASSERT_TRUE( reader.isOpened() );
cv::gpu::VideoWriter_GPU d_writer;
cv::Mat frame;
std::vector<cv::Mat> frames;
cv::gpu::GpuMat d_frame;
for (int i = 1; i < 10; ++i)
{
reader >> frame;
if (frame.empty())
break;
frames.push_back(frame.clone());
d_frame.upload(frame);
if (!d_writer.isOpened())
d_writer.open(outputFile, frame.size(), FPS);
d_writer.write(d_frame);
}
reader.release();
d_writer.close();
reader.open(outputFile);
ASSERT_TRUE( reader.isOpened() );
for (int i = 0; i < 5; ++i)
{
reader >> frame;
ASSERT_FALSE( frame.empty() );
}
}
INSTANTIATE_TEST_CASE_P(GPU_Video, VideoWriter, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("VID00003-20100701-2204.mpg"), std::string("big_buck_bunny.mpg"))));
#endif // WIN32
/////////////////////////////////////////////////////////////////////////////////////////////////
// VideoReader
PARAM_TEST_CASE(VideoReader, cv::gpu::DeviceInfo, std::string)
{
cv::gpu::DeviceInfo devInfo;
std::string inputFile;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
inputFile = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile;
}
};
TEST_P(VideoReader, Regression)
{
cv::gpu::VideoReader_GPU reader(inputFile);
ASSERT_TRUE( reader.isOpened() );
cv::gpu::GpuMat frame;
for (int i = 0; i < 5; ++i)
{
ASSERT_TRUE( reader.read(frame) );
ASSERT_FALSE( frame.empty() );
}
reader.close();
ASSERT_FALSE( reader.isOpened() );
}
INSTANTIATE_TEST_CASE_P(GPU_Video, VideoReader, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("VID00003-20100701-2204.mpg"))));
} // namespace