Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

385 lines
15 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(double, double, double, int, int, double, int, double, double, bool)
{
throw_no_cuda();
return Ptr<cv::cuda::OpticalFlowDual_TVL1>();
}
#else
using namespace cv;
using namespace cv::cuda;
namespace tvl1flow
{
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream);
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y,
PtrStepSzf u1, PtrStepSzf u2,
PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy,
PtrStepSzf grad, PtrStepSzf rho,
cudaStream_t stream);
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
PtrStepSzf grad, PtrStepSzf rho_c,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error,
float l_t, float theta, float gamma, bool calcError,
cudaStream_t stream);
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
float taut, float gamma,
cudaStream_t stream);
}
namespace
{
class OpticalFlowDual_TVL1_Impl : public OpticalFlowDual_TVL1
{
public:
OpticalFlowDual_TVL1_Impl(double tau, double lambda, double theta, int nscales, int warps, double epsilon,
int iterations, double scaleStep, double gamma, bool useInitialFlow) :
tau_(tau), lambda_(lambda), gamma_(gamma), theta_(theta), nscales_(nscales), warps_(warps),
epsilon_(epsilon), iterations_(iterations), scaleStep_(scaleStep), useInitialFlow_(useInitialFlow)
{
}
virtual double getTau() const { return tau_; }
virtual void setTau(double tau) { tau_ = tau; }
virtual double getLambda() const { return lambda_; }
virtual void setLambda(double lambda) { lambda_ = lambda; }
virtual double getGamma() const { return gamma_; }
virtual void setGamma(double gamma) { gamma_ = gamma; }
virtual double getTheta() const { return theta_; }
virtual void setTheta(double theta) { theta_ = theta; }
virtual int getNumScales() const { return nscales_; }
virtual void setNumScales(int nscales) { nscales_ = nscales; }
virtual int getNumWarps() const { return warps_; }
virtual void setNumWarps(int warps) { warps_ = warps; }
virtual double getEpsilon() const { return epsilon_; }
virtual void setEpsilon(double epsilon) { epsilon_ = epsilon; }
virtual int getNumIterations() const { return iterations_; }
virtual void setNumIterations(int iterations) { iterations_ = iterations; }
virtual double getScaleStep() const { return scaleStep_; }
virtual void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }
virtual bool getUseInitialFlow() const { return useInitialFlow_; }
virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);
private:
double tau_;
double lambda_;
double gamma_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
double scaleStep_;
bool useInitialFlow_;
private:
void calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream);
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& stream);
std::vector<GpuMat> I0s;
std::vector<GpuMat> I1s;
std::vector<GpuMat> u1s;
std::vector<GpuMat> u2s;
std::vector<GpuMat> u3s;
GpuMat I1x_buf;
GpuMat I1y_buf;
GpuMat I1w_buf;
GpuMat I1wx_buf;
GpuMat I1wy_buf;
GpuMat grad_buf;
GpuMat rho_c_buf;
GpuMat p11_buf;
GpuMat p12_buf;
GpuMat p21_buf;
GpuMat p22_buf;
GpuMat p31_buf;
GpuMat p32_buf;
GpuMat diff_buf;
GpuMat norm_buf;
};
void OpticalFlowDual_TVL1_Impl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream)
{
const GpuMat frame0 = _frame0.getGpuMat();
const GpuMat frame1 = _frame1.getGpuMat();
BufferPool pool(stream);
GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1);
GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1);
calcImpl(frame0, frame1, flowx, flowy, stream);
GpuMat flows[] = {flowx, flowy};
cuda::merge(flows, 2, _flow, stream);
}
void OpticalFlowDual_TVL1_Impl::calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream)
{
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
CV_Assert( I0.size() == I1.size() );
CV_Assert( I0.type() == I1.type() );
CV_Assert( !useInitialFlow_ || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
CV_Assert( nscales_ > 0 );
// allocate memory for the pyramid structure
I0s.resize(nscales_);
I1s.resize(nscales_);
u1s.resize(nscales_);
u2s.resize(nscales_);
u3s.resize(nscales_);
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0, stream);
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0, stream);
if (!useInitialFlow_)
{
flowx.create(I0.size(), CV_32FC1);
flowy.create(I0.size(), CV_32FC1);
}
u1s[0] = flowx;
u2s[0] = flowy;
if (gamma_)
{
u3s[0].create(I0.size(), CV_32FC1);
}
I1x_buf.create(I0.size(), CV_32FC1);
I1y_buf.create(I0.size(), CV_32FC1);
I1w_buf.create(I0.size(), CV_32FC1);
I1wx_buf.create(I0.size(), CV_32FC1);
I1wy_buf.create(I0.size(), CV_32FC1);
grad_buf.create(I0.size(), CV_32FC1);
rho_c_buf.create(I0.size(), CV_32FC1);
p11_buf.create(I0.size(), CV_32FC1);
p12_buf.create(I0.size(), CV_32FC1);
p21_buf.create(I0.size(), CV_32FC1);
p22_buf.create(I0.size(), CV_32FC1);
if (gamma_)
{
p31_buf.create(I0.size(), CV_32FC1);
p32_buf.create(I0.size(), CV_32FC1);
}
diff_buf.create(I0.size(), CV_32FC1);
// create the scales
for (int s = 1; s < nscales_; ++s)
{
cuda::resize(I0s[s-1], I0s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
cuda::resize(I1s[s-1], I1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
if (I0s[s].cols < 16 || I0s[s].rows < 16)
{
nscales_ = s;
break;
}
if (useInitialFlow_)
{
cuda::resize(u1s[s-1], u1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
cuda::resize(u2s[s-1], u2s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
cuda::multiply(u1s[s], Scalar::all(scaleStep_), u1s[s], 1, -1, stream);
cuda::multiply(u2s[s], Scalar::all(scaleStep_), u2s[s], 1, -1, stream);
}
else
{
u1s[s].create(I0s[s].size(), CV_32FC1);
u2s[s].create(I0s[s].size(), CV_32FC1);
}
if (gamma_)
{
u3s[s].create(I0s[s].size(), CV_32FC1);
}
}
if (!useInitialFlow_)
{
u1s[nscales_-1].setTo(Scalar::all(0), stream);
u2s[nscales_-1].setTo(Scalar::all(0), stream);
}
if (gamma_)
{
u3s[nscales_ - 1].setTo(Scalar::all(0), stream);
}
// pyramidal structure for computing the optical flow
for (int s = nscales_ - 1; s >= 0; --s)
{
// compute the optical flow at the current scale
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s], u3s[s], stream);
// if this was the last scale, finish now
if (s == 0)
break;
// otherwise, upsample the optical flow
// zoom the optical flow for the next finer scale
cuda::resize(u1s[s], u1s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
cuda::resize(u2s[s], u2s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
if (gamma_)
{
cuda::resize(u3s[s], u3s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
}
// scale the optical flow with the appropriate zoom factor
cuda::multiply(u1s[s - 1], Scalar::all(1/scaleStep_), u1s[s - 1], 1, -1, stream);
cuda::multiply(u2s[s - 1], Scalar::all(1/scaleStep_), u2s[s - 1], 1, -1, stream);
}
}
void OpticalFlowDual_TVL1_Impl::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& _stream)
{
using namespace tvl1flow;
cudaStream_t stream = StreamAccessor::getStream(_stream);
const double scaledEpsilon = epsilon_ * epsilon_ * I0.size().area();
CV_DbgAssert( I1.size() == I0.size() );
CV_DbgAssert( I1.type() == I0.type() );
CV_DbgAssert( u1.size() == I0.size() );
CV_DbgAssert( u2.size() == u1.size() );
GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
centeredGradient(I1, I1x, I1y, stream);
GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p31, p32;
if (gamma_)
{
p31 = p31_buf(Rect(0, 0, I0.cols, I0.rows));
p32 = p32_buf(Rect(0, 0, I0.cols, I0.rows));
}
p11.setTo(Scalar::all(0), _stream);
p12.setTo(Scalar::all(0), _stream);
p21.setTo(Scalar::all(0), _stream);
p22.setTo(Scalar::all(0), _stream);
if (gamma_)
{
p31.setTo(Scalar::all(0), _stream);
p32.setTo(Scalar::all(0), _stream);
}
GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda_ * theta_);
const float taut = static_cast<float>(tau_ / theta_);
for (int warpings = 0; warpings < warps_; ++warpings)
{
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c, stream);
double error = std::numeric_limits<double>::max();
double prevError = 0.0;
for (int n = 0; error > scaledEpsilon && n < iterations_; ++n)
{
// some tweaks to make sum operation less frequently
bool calcError = (epsilon_ > 0) && (n & 0x1) && (prevError < scaledEpsilon);
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, diff, l_t, static_cast<float>(theta_), gamma_, calcError, stream);
if (calcError)
{
_stream.waitForCompletion();
error = cuda::sum(diff, norm_buf)[0];
prevError = error;
}
else
{
error = std::numeric_limits<double>::max();
prevError -= scaledEpsilon;
}
estimateDualVariables(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma_, stream);
}
}
}
}
Ptr<OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(
double tau, double lambda, double theta, int nscales, int warps,
double epsilon, int iterations, double scaleStep, double gamma, bool useInitialFlow)
{
return makePtr<OpticalFlowDual_TVL1_Impl>(tau, lambda, theta, nscales, warps,
epsilon, iterations, scaleStep, gamma, useInitialFlow);
}
#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)