mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
385 lines
15 KiB
385 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(double, double, double, int, int, double, int, double, double, bool) |
|
{ |
|
throw_no_cuda(); |
|
return Ptr<cv::cuda::OpticalFlowDual_TVL1>(); |
|
} |
|
|
|
#else |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
namespace tvl1flow |
|
{ |
|
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream); |
|
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, |
|
PtrStepSzf u1, PtrStepSzf u2, |
|
PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, |
|
PtrStepSzf grad, PtrStepSzf rho, |
|
cudaStream_t stream); |
|
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy, |
|
PtrStepSzf grad, PtrStepSzf rho_c, |
|
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32, |
|
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error, |
|
float l_t, float theta, float gamma, bool calcError, |
|
cudaStream_t stream); |
|
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, |
|
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32, |
|
float taut, float gamma, |
|
cudaStream_t stream); |
|
} |
|
|
|
namespace |
|
{ |
|
class OpticalFlowDual_TVL1_Impl : public OpticalFlowDual_TVL1 |
|
{ |
|
public: |
|
OpticalFlowDual_TVL1_Impl(double tau, double lambda, double theta, int nscales, int warps, double epsilon, |
|
int iterations, double scaleStep, double gamma, bool useInitialFlow) : |
|
tau_(tau), lambda_(lambda), gamma_(gamma), theta_(theta), nscales_(nscales), warps_(warps), |
|
epsilon_(epsilon), iterations_(iterations), scaleStep_(scaleStep), useInitialFlow_(useInitialFlow) |
|
{ |
|
} |
|
|
|
virtual double getTau() const { return tau_; } |
|
virtual void setTau(double tau) { tau_ = tau; } |
|
|
|
virtual double getLambda() const { return lambda_; } |
|
virtual void setLambda(double lambda) { lambda_ = lambda; } |
|
|
|
virtual double getGamma() const { return gamma_; } |
|
virtual void setGamma(double gamma) { gamma_ = gamma; } |
|
|
|
virtual double getTheta() const { return theta_; } |
|
virtual void setTheta(double theta) { theta_ = theta; } |
|
|
|
virtual int getNumScales() const { return nscales_; } |
|
virtual void setNumScales(int nscales) { nscales_ = nscales; } |
|
|
|
virtual int getNumWarps() const { return warps_; } |
|
virtual void setNumWarps(int warps) { warps_ = warps; } |
|
|
|
virtual double getEpsilon() const { return epsilon_; } |
|
virtual void setEpsilon(double epsilon) { epsilon_ = epsilon; } |
|
|
|
virtual int getNumIterations() const { return iterations_; } |
|
virtual void setNumIterations(int iterations) { iterations_ = iterations; } |
|
|
|
virtual double getScaleStep() const { return scaleStep_; } |
|
virtual void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; } |
|
|
|
virtual bool getUseInitialFlow() const { return useInitialFlow_; } |
|
virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } |
|
|
|
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream); |
|
|
|
private: |
|
double tau_; |
|
double lambda_; |
|
double gamma_; |
|
double theta_; |
|
int nscales_; |
|
int warps_; |
|
double epsilon_; |
|
int iterations_; |
|
double scaleStep_; |
|
bool useInitialFlow_; |
|
|
|
private: |
|
void calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream); |
|
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& stream); |
|
|
|
std::vector<GpuMat> I0s; |
|
std::vector<GpuMat> I1s; |
|
std::vector<GpuMat> u1s; |
|
std::vector<GpuMat> u2s; |
|
std::vector<GpuMat> u3s; |
|
|
|
GpuMat I1x_buf; |
|
GpuMat I1y_buf; |
|
|
|
GpuMat I1w_buf; |
|
GpuMat I1wx_buf; |
|
GpuMat I1wy_buf; |
|
|
|
GpuMat grad_buf; |
|
GpuMat rho_c_buf; |
|
|
|
GpuMat p11_buf; |
|
GpuMat p12_buf; |
|
GpuMat p21_buf; |
|
GpuMat p22_buf; |
|
GpuMat p31_buf; |
|
GpuMat p32_buf; |
|
|
|
GpuMat diff_buf; |
|
GpuMat norm_buf; |
|
}; |
|
|
|
void OpticalFlowDual_TVL1_Impl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream) |
|
{ |
|
const GpuMat frame0 = _frame0.getGpuMat(); |
|
const GpuMat frame1 = _frame1.getGpuMat(); |
|
|
|
BufferPool pool(stream); |
|
GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1); |
|
GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1); |
|
|
|
calcImpl(frame0, frame1, flowx, flowy, stream); |
|
|
|
GpuMat flows[] = {flowx, flowy}; |
|
cuda::merge(flows, 2, _flow, stream); |
|
} |
|
|
|
void OpticalFlowDual_TVL1_Impl::calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream) |
|
{ |
|
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); |
|
CV_Assert( I0.size() == I1.size() ); |
|
CV_Assert( I0.type() == I1.type() ); |
|
CV_Assert( !useInitialFlow_ || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) ); |
|
CV_Assert( nscales_ > 0 ); |
|
|
|
// allocate memory for the pyramid structure |
|
I0s.resize(nscales_); |
|
I1s.resize(nscales_); |
|
u1s.resize(nscales_); |
|
u2s.resize(nscales_); |
|
u3s.resize(nscales_); |
|
|
|
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0, stream); |
|
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0, stream); |
|
|
|
if (!useInitialFlow_) |
|
{ |
|
flowx.create(I0.size(), CV_32FC1); |
|
flowy.create(I0.size(), CV_32FC1); |
|
} |
|
|
|
u1s[0] = flowx; |
|
u2s[0] = flowy; |
|
if (gamma_) |
|
{ |
|
u3s[0].create(I0.size(), CV_32FC1); |
|
} |
|
|
|
I1x_buf.create(I0.size(), CV_32FC1); |
|
I1y_buf.create(I0.size(), CV_32FC1); |
|
|
|
I1w_buf.create(I0.size(), CV_32FC1); |
|
I1wx_buf.create(I0.size(), CV_32FC1); |
|
I1wy_buf.create(I0.size(), CV_32FC1); |
|
|
|
grad_buf.create(I0.size(), CV_32FC1); |
|
rho_c_buf.create(I0.size(), CV_32FC1); |
|
|
|
p11_buf.create(I0.size(), CV_32FC1); |
|
p12_buf.create(I0.size(), CV_32FC1); |
|
p21_buf.create(I0.size(), CV_32FC1); |
|
p22_buf.create(I0.size(), CV_32FC1); |
|
if (gamma_) |
|
{ |
|
p31_buf.create(I0.size(), CV_32FC1); |
|
p32_buf.create(I0.size(), CV_32FC1); |
|
} |
|
diff_buf.create(I0.size(), CV_32FC1); |
|
|
|
// create the scales |
|
for (int s = 1; s < nscales_; ++s) |
|
{ |
|
cuda::resize(I0s[s-1], I0s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream); |
|
cuda::resize(I1s[s-1], I1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream); |
|
|
|
if (I0s[s].cols < 16 || I0s[s].rows < 16) |
|
{ |
|
nscales_ = s; |
|
break; |
|
} |
|
|
|
if (useInitialFlow_) |
|
{ |
|
cuda::resize(u1s[s-1], u1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream); |
|
cuda::resize(u2s[s-1], u2s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream); |
|
|
|
cuda::multiply(u1s[s], Scalar::all(scaleStep_), u1s[s], 1, -1, stream); |
|
cuda::multiply(u2s[s], Scalar::all(scaleStep_), u2s[s], 1, -1, stream); |
|
} |
|
else |
|
{ |
|
u1s[s].create(I0s[s].size(), CV_32FC1); |
|
u2s[s].create(I0s[s].size(), CV_32FC1); |
|
} |
|
if (gamma_) |
|
{ |
|
u3s[s].create(I0s[s].size(), CV_32FC1); |
|
} |
|
} |
|
|
|
if (!useInitialFlow_) |
|
{ |
|
u1s[nscales_-1].setTo(Scalar::all(0), stream); |
|
u2s[nscales_-1].setTo(Scalar::all(0), stream); |
|
} |
|
if (gamma_) |
|
{ |
|
u3s[nscales_ - 1].setTo(Scalar::all(0), stream); |
|
} |
|
|
|
// pyramidal structure for computing the optical flow |
|
for (int s = nscales_ - 1; s >= 0; --s) |
|
{ |
|
// compute the optical flow at the current scale |
|
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s], u3s[s], stream); |
|
|
|
// if this was the last scale, finish now |
|
if (s == 0) |
|
break; |
|
|
|
// otherwise, upsample the optical flow |
|
|
|
// zoom the optical flow for the next finer scale |
|
cuda::resize(u1s[s], u1s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream); |
|
cuda::resize(u2s[s], u2s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream); |
|
if (gamma_) |
|
{ |
|
cuda::resize(u3s[s], u3s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream); |
|
} |
|
|
|
// scale the optical flow with the appropriate zoom factor |
|
cuda::multiply(u1s[s - 1], Scalar::all(1/scaleStep_), u1s[s - 1], 1, -1, stream); |
|
cuda::multiply(u2s[s - 1], Scalar::all(1/scaleStep_), u2s[s - 1], 1, -1, stream); |
|
} |
|
} |
|
|
|
void OpticalFlowDual_TVL1_Impl::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& _stream) |
|
{ |
|
using namespace tvl1flow; |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
const double scaledEpsilon = epsilon_ * epsilon_ * I0.size().area(); |
|
|
|
CV_DbgAssert( I1.size() == I0.size() ); |
|
CV_DbgAssert( I1.type() == I0.type() ); |
|
CV_DbgAssert( u1.size() == I0.size() ); |
|
CV_DbgAssert( u2.size() == u1.size() ); |
|
|
|
GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
centeredGradient(I1, I1x, I1y, stream); |
|
|
|
GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
GpuMat p31, p32; |
|
if (gamma_) |
|
{ |
|
p31 = p31_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
p32 = p32_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
} |
|
p11.setTo(Scalar::all(0), _stream); |
|
p12.setTo(Scalar::all(0), _stream); |
|
p21.setTo(Scalar::all(0), _stream); |
|
p22.setTo(Scalar::all(0), _stream); |
|
if (gamma_) |
|
{ |
|
p31.setTo(Scalar::all(0), _stream); |
|
p32.setTo(Scalar::all(0), _stream); |
|
} |
|
|
|
GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
const float l_t = static_cast<float>(lambda_ * theta_); |
|
const float taut = static_cast<float>(tau_ / theta_); |
|
|
|
for (int warpings = 0; warpings < warps_; ++warpings) |
|
{ |
|
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c, stream); |
|
|
|
double error = std::numeric_limits<double>::max(); |
|
double prevError = 0.0; |
|
for (int n = 0; error > scaledEpsilon && n < iterations_; ++n) |
|
{ |
|
// some tweaks to make sum operation less frequently |
|
bool calcError = (epsilon_ > 0) && (n & 0x1) && (prevError < scaledEpsilon); |
|
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, diff, l_t, static_cast<float>(theta_), gamma_, calcError, stream); |
|
if (calcError) |
|
{ |
|
_stream.waitForCompletion(); |
|
error = cuda::sum(diff, norm_buf)[0]; |
|
prevError = error; |
|
} |
|
else |
|
{ |
|
error = std::numeric_limits<double>::max(); |
|
prevError -= scaledEpsilon; |
|
} |
|
|
|
estimateDualVariables(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma_, stream); |
|
} |
|
} |
|
} |
|
} |
|
|
|
Ptr<OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create( |
|
double tau, double lambda, double theta, int nscales, int warps, |
|
double epsilon, int iterations, double scaleStep, double gamma, bool useInitialFlow) |
|
{ |
|
return makePtr<OpticalFlowDual_TVL1_Impl>(tau, lambda, theta, nscales, warps, |
|
epsilon, iterations, scaleStep, gamma, useInitialFlow); |
|
} |
|
|
|
#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|