mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
6.5 KiB
218 lines
6.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
using namespace cvtest; |
|
using namespace testing; |
|
using namespace std; |
|
|
|
#define MAX_CHANNELS 4 |
|
|
|
PARAM_TEST_CASE(MergeTestBase, MatDepth, Channels, bool) |
|
{ |
|
int type; |
|
int channels; |
|
bool use_roi; |
|
|
|
//src mat |
|
cv::Mat mat[MAX_CHANNELS]; |
|
//dst mat |
|
cv::Mat dst; |
|
|
|
// set up roi |
|
int roicols, roirows; |
|
int srcx[MAX_CHANNELS]; |
|
int srcy[MAX_CHANNELS]; |
|
int dstx, dsty; |
|
|
|
//src mat with roi |
|
cv::Mat mat_roi[MAX_CHANNELS]; |
|
|
|
//dst mat with roi |
|
cv::Mat dst_roi; |
|
|
|
//ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gmat[MAX_CHANNELS]; |
|
cv::ocl::oclMat gdst; |
|
|
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
channels = GET_PARAM(1); |
|
use_roi = GET_PARAM(2); |
|
|
|
cv::Size size(MWIDTH, MHEIGHT); |
|
|
|
for (int i = 0; i < channels; ++i) |
|
mat[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false); |
|
dst = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
if (use_roi) |
|
{ |
|
//randomize ROI |
|
roicols = rng.uniform(1, mat[0].cols); |
|
roirows = rng.uniform(1, mat[0].rows); |
|
|
|
for (int i = 0; i < channels; ++i) |
|
{ |
|
srcx[i] = rng.uniform(0, mat[i].cols - roicols); |
|
srcy[i] = rng.uniform(0, mat[i].rows - roirows); |
|
} |
|
|
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
} |
|
else |
|
{ |
|
roicols = mat[0].cols; |
|
roirows = mat[0].rows; |
|
for (int i = 0; i < channels; ++i) |
|
srcx[i] = srcy[i] = 0; |
|
|
|
dstx = dsty = 0; |
|
} |
|
|
|
for (int i = 0; i < channels; ++i) |
|
mat_roi[i] = mat[i](Rect(srcx[i], srcy[i], roicols, roirows)); |
|
|
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
for (int i = 0; i < channels; ++i) |
|
gmat[i] = mat_roi[i]; |
|
} |
|
}; |
|
|
|
struct Merge : MergeTestBase {}; |
|
|
|
OCL_TEST_P(Merge, Accuracy) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::merge(mat_roi, channels, dst_roi); |
|
cv::ocl::merge(gmat, channels, gdst); |
|
|
|
EXPECT_MAT_NEAR(dst, Mat(gdst_whole), 0.0); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(SplitTestBase, MatType, int, bool) |
|
{ |
|
int type; |
|
int channels; |
|
bool use_roi; |
|
|
|
cv::Mat src, src_roi; |
|
cv::Mat dst[MAX_CHANNELS], dst_roi[MAX_CHANNELS]; |
|
|
|
cv::ocl::oclMat gsrc_whole, gsrc_roi; |
|
cv::ocl::oclMat gdst_whole[MAX_CHANNELS], gdst_roi[MAX_CHANNELS]; |
|
|
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
channels = GET_PARAM(1); |
|
use_roi = GET_PARAM(2); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
Size roiSize = randomSize(1, MAX_VALUE); |
|
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); |
|
randomSubMat(src, src_roi, roiSize, srcBorder, CV_MAKETYPE(type, channels), 0, 256); |
|
generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder); |
|
|
|
for (int i = 0; i < channels; ++i) |
|
{ |
|
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); |
|
randomSubMat(dst[i], dst_roi[i], roiSize, dstBorder, CV_MAKETYPE(type, 1), 5, 16); |
|
generateOclMat(gdst_whole[i], gdst_roi[i], dst[i], roiSize, dstBorder); |
|
} |
|
} |
|
}; |
|
|
|
struct Split : SplitTestBase {}; |
|
|
|
OCL_TEST_P(Split, Accuracy) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::split(src_roi, dst_roi); |
|
cv::ocl::split(gsrc_roi, gdst_roi); |
|
|
|
for (int i = 0; i < channels; ++i) |
|
{ |
|
EXPECT_MAT_NEAR(dst[i], gdst_whole[i], 0.0); |
|
EXPECT_MAT_NEAR(dst_roi[i], gdst_roi[i], 0.0); |
|
} |
|
} |
|
} |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(SplitMerge, Merge, Combine( |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F), Values(1, 2, 3, 4), Bool())); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(SplitMerge, Split , Combine( |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F), Values(1, 2, 3, 4), Bool())); |
|
|
|
|
|
#endif // HAVE_OPENCL
|
|
|