mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
5.3 KiB
157 lines
5.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
class HausdorffDistanceExtractorImpl CV_FINAL : public HausdorffDistanceExtractor |
|
{ |
|
public: |
|
/* Constructor */ |
|
HausdorffDistanceExtractorImpl(int _distanceFlag = NORM_L1, float _rankProportion=0.6) |
|
{ |
|
distanceFlag = _distanceFlag; |
|
rankProportion = _rankProportion; |
|
name_ = "ShapeDistanceExtractor.HAU"; |
|
} |
|
|
|
/* Destructor */ |
|
~HausdorffDistanceExtractorImpl() |
|
{ |
|
} |
|
|
|
//! the main operator |
|
virtual float computeDistance(InputArray contour1, InputArray contour2) CV_OVERRIDE; |
|
|
|
//! Setters/Getters |
|
virtual void setDistanceFlag(int _distanceFlag) CV_OVERRIDE {distanceFlag=_distanceFlag;} |
|
virtual int getDistanceFlag() const CV_OVERRIDE {return distanceFlag;} |
|
|
|
virtual void setRankProportion(float _rankProportion) CV_OVERRIDE |
|
{ |
|
CV_Assert((_rankProportion>0) && (_rankProportion<=1)); |
|
rankProportion=_rankProportion; |
|
} |
|
virtual float getRankProportion() const CV_OVERRIDE {return rankProportion;} |
|
|
|
//! write/read |
|
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name_ |
|
<< "distance" << distanceFlag |
|
<< "rank" << rankProportion; |
|
} |
|
|
|
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
CV_Assert( (String)fn["name"] == name_ ); |
|
distanceFlag = (int)fn["distance"]; |
|
rankProportion = (float)fn["rank"]; |
|
} |
|
|
|
private: |
|
int distanceFlag; |
|
float rankProportion; |
|
|
|
protected: |
|
String name_; |
|
}; |
|
|
|
//! Hausdorff distance for a pair of set of points |
|
static float _apply(const Mat &set1, const Mat &set2, int distType, double propRank) |
|
{ |
|
// Building distance matrix // |
|
Mat disMat(set1.cols, set2.cols, CV_32F); |
|
int K = int(propRank*(disMat.rows-1)); |
|
|
|
for (int r=0; r<disMat.rows; r++) |
|
{ |
|
for (int c=0; c<disMat.cols; c++) |
|
{ |
|
Point2f diff = set1.at<Point2f>(0,r)-set2.at<Point2f>(0,c); |
|
disMat.at<float>(r,c) = (float)norm(Mat(diff), distType); |
|
} |
|
} |
|
|
|
Mat shortest(disMat.rows,1,CV_32F); |
|
for (int ii=0; ii<disMat.rows; ii++) |
|
{ |
|
Mat therow = disMat.row(ii); |
|
double mindis; |
|
minMaxIdx(therow, &mindis); |
|
shortest.at<float>(ii,0) = float(mindis); |
|
} |
|
Mat sorted; |
|
cv::sort(shortest, sorted, SORT_EVERY_ROW | SORT_DESCENDING); |
|
return sorted.at<float>(K,0); |
|
} |
|
|
|
float HausdorffDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat set1=contour1.getMat(), set2=contour2.getMat(); |
|
if (set1.type() != CV_32F) |
|
set1.convertTo(set1, CV_32F); |
|
if (set2.type() != CV_32F) |
|
set2.convertTo(set2, CV_32F); |
|
CV_Assert((set1.channels()==2) && (set1.cols>0)); |
|
CV_Assert((set2.channels()==2) && (set2.cols>0)); |
|
|
|
// Force vectors column-based |
|
if (set1.dims > 1) |
|
set1 = set1.reshape(2, 1); |
|
if (set2.dims > 1) |
|
set2 = set2.reshape(2, 1); |
|
|
|
return std::max( _apply(set1, set2, distanceFlag, rankProportion), |
|
_apply(set2, set1, distanceFlag, rankProportion) ); |
|
} |
|
|
|
Ptr <HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag, float rankProp) |
|
{ |
|
return Ptr<HausdorffDistanceExtractor>(new HausdorffDistanceExtractorImpl(distanceFlag, rankProp)); |
|
} |
|
|
|
} // cv
|
|
|