mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
693 lines
25 KiB
693 lines
25 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/ts/cuda_test.hpp" // EXPECT_MAT_NEAR |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#define NUM_DIST_COEFF_TILT 14 |
|
|
|
/** |
|
Some conventions: |
|
- the first camera determines the world coordinate system |
|
- y points down, hence top means minimal y value (negative) and |
|
bottom means maximal y value (positive) |
|
- the field of view plane is tilted around x such that it |
|
intersects the xy-plane in a line with a large (positive) |
|
y-value |
|
- image sensor and object are both modelled in the halfspace |
|
z > 0 |
|
|
|
|
|
**/ |
|
class cameraCalibrationTiltTest : public ::testing::Test { |
|
|
|
protected: |
|
cameraCalibrationTiltTest() |
|
: m_toRadian(acos(-1.0)/180.0) |
|
, m_toDegree(180.0/acos(-1.0)) |
|
{} |
|
virtual void SetUp(); |
|
|
|
protected: |
|
static const cv::Size m_imageSize; |
|
static const double m_pixelSize; |
|
static const double m_circleConfusionPixel; |
|
static const double m_lensFocalLength; |
|
static const double m_lensFNumber; |
|
static const double m_objectDistance; |
|
static const double m_planeTiltDegree; |
|
static const double m_pointTargetDist; |
|
static const int m_pointTargetNum; |
|
|
|
/** image distance corresponding to working distance */ |
|
double m_imageDistance; |
|
/** image tilt angle corresponding to the tilt of the object plane */ |
|
double m_imageTiltDegree; |
|
/** center of the field of view, near and far plane */ |
|
std::vector<cv::Vec3d> m_fovCenter; |
|
/** normal of the field of view, near and far plane */ |
|
std::vector<cv::Vec3d> m_fovNormal; |
|
/** points on a plane calibration target */ |
|
std::vector<cv::Point3d> m_pointTarget; |
|
/** rotations for the calibration target */ |
|
std::vector<cv::Vec3d> m_pointTargetRvec; |
|
/** translations for the calibration target */ |
|
std::vector<cv::Vec3d> m_pointTargetTvec; |
|
/** camera matrix */ |
|
cv::Matx33d m_cameraMatrix; |
|
/** distortion coefficients */ |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> m_distortionCoeff; |
|
|
|
/** random generator */ |
|
cv::RNG m_rng; |
|
/** degree to radian conversion factor */ |
|
const double m_toRadian; |
|
/** radian to degree conversion factor */ |
|
const double m_toDegree; |
|
|
|
/** |
|
computes for a given distance of an image or object point |
|
the distance of the corresponding object or image point |
|
*/ |
|
double opticalMap(double dist) { |
|
return m_lensFocalLength*dist/(dist - m_lensFocalLength); |
|
} |
|
|
|
/** magnification of the optical map */ |
|
double magnification(double dist) { |
|
return m_lensFocalLength/(dist - m_lensFocalLength); |
|
} |
|
|
|
/** |
|
Changes given distortion coefficients randomly by adding |
|
a uniformly distributed random variable in [-max max] |
|
\param coeff input |
|
\param max limits for the random variables |
|
*/ |
|
void randomDistortionCoeff( |
|
cv::Vec<double, NUM_DIST_COEFF_TILT>& coeff, |
|
const cv::Vec<double, NUM_DIST_COEFF_TILT>& max) |
|
{ |
|
for (int i = 0; i < coeff.rows; ++i) |
|
coeff(i) += m_rng.uniform(-max(i), max(i)); |
|
} |
|
|
|
/** numerical jacobian */ |
|
void numericalDerivative( |
|
cv::Mat& jac, |
|
double eps, |
|
const std::vector<cv::Point3d>& obj, |
|
const cv::Vec3d& rvec, |
|
const cv::Vec3d& tvec, |
|
const cv::Matx33d& camera, |
|
const cv::Vec<double, NUM_DIST_COEFF_TILT>& distor); |
|
|
|
/** remove points with projection outside the sensor array */ |
|
void removeInvalidPoints( |
|
std::vector<cv::Point2d>& imagePoints, |
|
std::vector<cv::Point3d>& objectPoints); |
|
|
|
/** add uniform distribute noise in [-halfWidthNoise, halfWidthNoise] |
|
to the image points and remove out of range points */ |
|
void addNoiseRemoveInvalidPoints( |
|
std::vector<cv::Point2f>& imagePoints, |
|
std::vector<cv::Point3f>& objectPoints, |
|
std::vector<cv::Point2f>& noisyImagePoints, |
|
double halfWidthNoise); |
|
}; |
|
|
|
/** Number of Pixel of the sensor */ |
|
const cv::Size cameraCalibrationTiltTest::m_imageSize(1600, 1200); |
|
/** Size of a pixel in mm */ |
|
const double cameraCalibrationTiltTest::m_pixelSize(.005); |
|
/** Diameter of the circle of confusion */ |
|
const double cameraCalibrationTiltTest::m_circleConfusionPixel(3); |
|
/** Focal length of the lens */ |
|
const double cameraCalibrationTiltTest::m_lensFocalLength(16.4); |
|
/** F-Number */ |
|
const double cameraCalibrationTiltTest::m_lensFNumber(8); |
|
/** Working distance */ |
|
const double cameraCalibrationTiltTest::m_objectDistance(200); |
|
/** Angle between optical axis and object plane normal */ |
|
const double cameraCalibrationTiltTest::m_planeTiltDegree(55); |
|
/** the calibration target are points on a square grid with this side length */ |
|
const double cameraCalibrationTiltTest::m_pointTargetDist(5); |
|
/** the calibration target has (2*n + 1) x (2*n + 1) points */ |
|
const int cameraCalibrationTiltTest::m_pointTargetNum(15); |
|
|
|
|
|
void cameraCalibrationTiltTest::SetUp() |
|
{ |
|
m_imageDistance = opticalMap(m_objectDistance); |
|
m_imageTiltDegree = m_toDegree * atan2( |
|
m_imageDistance * tan(m_toRadian * m_planeTiltDegree), |
|
m_objectDistance); |
|
// half sensor height |
|
double tmp = .5 * (m_imageSize.height - 1) * m_pixelSize |
|
* cos(m_toRadian * m_imageTiltDegree); |
|
// y-Value of tilted sensor |
|
double yImage[2] = {tmp, -tmp}; |
|
// change in z because of the tilt |
|
tmp *= sin(m_toRadian * m_imageTiltDegree); |
|
// z-values of the sensor lower and upper corner |
|
double zImage[2] = { |
|
m_imageDistance + tmp, |
|
m_imageDistance - tmp}; |
|
// circle of confusion |
|
double circleConfusion = m_circleConfusionPixel*m_pixelSize; |
|
// aperture of the lense |
|
double aperture = m_lensFocalLength/m_lensFNumber; |
|
// near and far factor on the image side |
|
double nearFarFactorImage[2] = { |
|
aperture/(aperture - circleConfusion), |
|
aperture/(aperture + circleConfusion)}; |
|
// on the object side - points that determine the field of |
|
// view |
|
std::vector<cv::Vec3d> fovBottomTop(6); |
|
std::vector<cv::Vec3d>::iterator itFov = fovBottomTop.begin(); |
|
for (size_t iBottomTop = 0; iBottomTop < 2; ++iBottomTop) |
|
{ |
|
// mapping sensor to field of view |
|
*itFov = cv::Vec3d(0,yImage[iBottomTop],zImage[iBottomTop]); |
|
*itFov *= magnification((*itFov)(2)); |
|
++itFov; |
|
for (size_t iNearFar = 0; iNearFar < 2; ++iNearFar, ++itFov) |
|
{ |
|
// scaling to the near and far distance on the |
|
// image side |
|
*itFov = cv::Vec3d(0,yImage[iBottomTop],zImage[iBottomTop]) * |
|
nearFarFactorImage[iNearFar]; |
|
// scaling to the object side |
|
*itFov *= magnification((*itFov)(2)); |
|
} |
|
} |
|
m_fovCenter.resize(3); |
|
m_fovNormal.resize(3); |
|
for (size_t i = 0; i < 3; ++i) |
|
{ |
|
m_fovCenter[i] = .5*(fovBottomTop[i] + fovBottomTop[i+3]); |
|
m_fovNormal[i] = fovBottomTop[i+3] - fovBottomTop[i]; |
|
m_fovNormal[i] = cv::normalize(m_fovNormal[i]); |
|
m_fovNormal[i] = cv::Vec3d( |
|
m_fovNormal[i](0), |
|
-m_fovNormal[i](2), |
|
m_fovNormal[i](1)); |
|
// one target position in each plane |
|
m_pointTargetTvec.push_back(m_fovCenter[i]); |
|
cv::Vec3d rvec = cv::Vec3d(0,0,1).cross(m_fovNormal[i]); |
|
rvec = cv::normalize(rvec); |
|
rvec *= acos(m_fovNormal[i](2)); |
|
m_pointTargetRvec.push_back(rvec); |
|
} |
|
// calibration target |
|
size_t num = 2*m_pointTargetNum + 1; |
|
m_pointTarget.resize(num*num); |
|
std::vector<cv::Point3d>::iterator itTarget = m_pointTarget.begin(); |
|
for (int iY = -m_pointTargetNum; iY <= m_pointTargetNum; ++iY) |
|
{ |
|
for (int iX = -m_pointTargetNum; iX <= m_pointTargetNum; ++iX, ++itTarget) |
|
{ |
|
*itTarget = cv::Point3d(iX, iY, 0) * m_pointTargetDist; |
|
} |
|
} |
|
// oblique target positions |
|
// approximate distance to the near and far plane |
|
double dist = std::max( |
|
std::abs(m_fovNormal[0].dot(m_fovCenter[0] - m_fovCenter[1])), |
|
std::abs(m_fovNormal[0].dot(m_fovCenter[0] - m_fovCenter[2]))); |
|
// maximal angle such that target border "reaches" near and far plane |
|
double maxAngle = atan2(dist, m_pointTargetNum*m_pointTargetDist); |
|
std::vector<double> angle; |
|
angle.push_back(-maxAngle); |
|
angle.push_back(maxAngle); |
|
cv::Matx33d baseMatrix; |
|
cv::Rodrigues(m_pointTargetRvec.front(), baseMatrix); |
|
for (std::vector<double>::const_iterator itAngle = angle.begin(); itAngle != angle.end(); ++itAngle) |
|
{ |
|
cv::Matx33d rmat; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
cv::Vec3d rvec(0,0,0); |
|
rvec(i) = *itAngle; |
|
cv::Rodrigues(rvec, rmat); |
|
rmat = baseMatrix*rmat; |
|
cv::Rodrigues(rmat, rvec); |
|
m_pointTargetTvec.push_back(m_fovCenter.front()); |
|
m_pointTargetRvec.push_back(rvec); |
|
} |
|
} |
|
// camera matrix |
|
double cx = .5 * (m_imageSize.width - 1); |
|
double cy = .5 * (m_imageSize.height - 1); |
|
double f = m_imageDistance/m_pixelSize; |
|
m_cameraMatrix = cv::Matx33d( |
|
f,0,cx, |
|
0,f,cy, |
|
0,0,1); |
|
// distortion coefficients |
|
m_distortionCoeff = cv::Vec<double, NUM_DIST_COEFF_TILT>::all(0); |
|
// tauX |
|
m_distortionCoeff(12) = -m_toRadian*m_imageTiltDegree; |
|
|
|
} |
|
|
|
void cameraCalibrationTiltTest::numericalDerivative( |
|
cv::Mat& jac, |
|
double eps, |
|
const std::vector<cv::Point3d>& obj, |
|
const cv::Vec3d& rvec, |
|
const cv::Vec3d& tvec, |
|
const cv::Matx33d& camera, |
|
const cv::Vec<double, NUM_DIST_COEFF_TILT>& distor) |
|
{ |
|
cv::Vec3d r(rvec); |
|
cv::Vec3d t(tvec); |
|
cv::Matx33d cm(camera); |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> dc(distor); |
|
double* param[10+NUM_DIST_COEFF_TILT] = { |
|
&r(0), &r(1), &r(2), |
|
&t(0), &t(1), &t(2), |
|
&cm(0,0), &cm(1,1), &cm(0,2), &cm(1,2), |
|
&dc(0), &dc(1), &dc(2), &dc(3), &dc(4), &dc(5), &dc(6), |
|
&dc(7), &dc(8), &dc(9), &dc(10), &dc(11), &dc(12), &dc(13)}; |
|
std::vector<cv::Point2d> pix0, pix1; |
|
double invEps = .5/eps; |
|
|
|
for (int col = 0; col < 10+NUM_DIST_COEFF_TILT; ++col) |
|
{ |
|
double save = *(param[col]); |
|
*(param[col]) = save + eps; |
|
cv::projectPoints(obj, r, t, cm, dc, pix0); |
|
*(param[col]) = save - eps; |
|
cv::projectPoints(obj, r, t, cm, dc, pix1); |
|
*(param[col]) = save; |
|
|
|
std::vector<cv::Point2d>::const_iterator it0 = pix0.begin(); |
|
std::vector<cv::Point2d>::const_iterator it1 = pix1.begin(); |
|
int row = 0; |
|
for (;it0 != pix0.end(); ++it0, ++it1) |
|
{ |
|
cv::Point2d d = invEps*(*it0 - *it1); |
|
jac.at<double>(row, col) = d.x; |
|
++row; |
|
jac.at<double>(row, col) = d.y; |
|
++row; |
|
} |
|
} |
|
} |
|
|
|
void cameraCalibrationTiltTest::removeInvalidPoints( |
|
std::vector<cv::Point2d>& imagePoints, |
|
std::vector<cv::Point3d>& objectPoints) |
|
{ |
|
// remove object and imgage points out of range |
|
std::vector<cv::Point2d>::iterator itImg = imagePoints.begin(); |
|
std::vector<cv::Point3d>::iterator itObj = objectPoints.begin(); |
|
while (itImg != imagePoints.end()) |
|
{ |
|
bool ok = |
|
itImg->x >= 0 && |
|
itImg->x <= m_imageSize.width - 1.0 && |
|
itImg->y >= 0 && |
|
itImg->y <= m_imageSize.height - 1.0; |
|
if (ok) |
|
{ |
|
++itImg; |
|
++itObj; |
|
} |
|
else |
|
{ |
|
itImg = imagePoints.erase(itImg); |
|
itObj = objectPoints.erase(itObj); |
|
} |
|
} |
|
} |
|
|
|
void cameraCalibrationTiltTest::addNoiseRemoveInvalidPoints( |
|
std::vector<cv::Point2f>& imagePoints, |
|
std::vector<cv::Point3f>& objectPoints, |
|
std::vector<cv::Point2f>& noisyImagePoints, |
|
double halfWidthNoise) |
|
{ |
|
std::vector<cv::Point2f>::iterator itImg = imagePoints.begin(); |
|
std::vector<cv::Point3f>::iterator itObj = objectPoints.begin(); |
|
noisyImagePoints.clear(); |
|
noisyImagePoints.reserve(imagePoints.size()); |
|
while (itImg != imagePoints.end()) |
|
{ |
|
cv::Point2f pix = *itImg + cv::Point2f( |
|
(float)m_rng.uniform(-halfWidthNoise, halfWidthNoise), |
|
(float)m_rng.uniform(-halfWidthNoise, halfWidthNoise)); |
|
bool ok = |
|
pix.x >= 0 && |
|
pix.x <= m_imageSize.width - 1.0 && |
|
pix.y >= 0 && |
|
pix.y <= m_imageSize.height - 1.0; |
|
if (ok) |
|
{ |
|
noisyImagePoints.push_back(pix); |
|
++itImg; |
|
++itObj; |
|
} |
|
else |
|
{ |
|
itImg = imagePoints.erase(itImg); |
|
itObj = objectPoints.erase(itObj); |
|
} |
|
} |
|
} |
|
|
|
|
|
TEST_F(cameraCalibrationTiltTest, projectPoints) |
|
{ |
|
std::vector<cv::Point2d> imagePoints; |
|
std::vector<cv::Point3d> objectPoints = m_pointTarget; |
|
cv::Vec3d rvec = m_pointTargetRvec.front(); |
|
cv::Vec3d tvec = m_pointTargetTvec.front(); |
|
|
|
cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth( |
|
.1, .1, // k1 k2 |
|
.01, .01, // p1 p2 |
|
.001, .001, .001, .001, // k3 k4 k5 k6 |
|
.001, .001, .001, .001, // s1 s2 s3 s4 |
|
.01, .01); // tauX tauY |
|
for (size_t numTest = 0; numTest < 10; ++numTest) |
|
{ |
|
// create random distortion coefficients |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff; |
|
randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth); |
|
|
|
// projection |
|
cv::projectPoints( |
|
objectPoints, |
|
rvec, |
|
tvec, |
|
m_cameraMatrix, |
|
distortionCoeff, |
|
imagePoints); |
|
|
|
// remove object and imgage points out of range |
|
removeInvalidPoints(imagePoints, objectPoints); |
|
|
|
int numPoints = (int)imagePoints.size(); |
|
int numParams = 10 + distortionCoeff.rows; |
|
cv::Mat jacobian(2*numPoints, numParams, CV_64FC1); |
|
|
|
// projection and jacobian |
|
cv::projectPoints( |
|
objectPoints, |
|
rvec, |
|
tvec, |
|
m_cameraMatrix, |
|
distortionCoeff, |
|
imagePoints, |
|
jacobian); |
|
|
|
// numerical derivatives |
|
cv::Mat numericJacobian(2*numPoints, numParams, CV_64FC1); |
|
double eps = 1e-7; |
|
numericalDerivative( |
|
numericJacobian, |
|
eps, |
|
objectPoints, |
|
rvec, |
|
tvec, |
|
m_cameraMatrix, |
|
distortionCoeff); |
|
|
|
#if 0 |
|
for (size_t row = 0; row < 2; ++row) |
|
{ |
|
std::cout << "------ Row = " << row << " ------\n"; |
|
for (size_t i = 0; i < 10+NUM_DIST_COEFF_TILT; ++i) |
|
{ |
|
std::cout << i |
|
<< " jac = " << jacobian.at<double>(row,i) |
|
<< " num = " << numericJacobian.at<double>(row,i) |
|
<< " rel. diff = " << abs(numericJacobian.at<double>(row,i) - jacobian.at<double>(row,i))/abs(numericJacobian.at<double>(row,i)) |
|
<< "\n"; |
|
} |
|
} |
|
#endif |
|
// relative difference for large values (rvec and tvec) |
|
cv::Mat check = abs(jacobian(cv::Range::all(), cv::Range(0,6)) - numericJacobian(cv::Range::all(), cv::Range(0,6)))/ |
|
(1 + abs(jacobian(cv::Range::all(), cv::Range(0,6)))); |
|
double minVal, maxVal; |
|
cv::minMaxIdx(check, &minVal, &maxVal); |
|
EXPECT_LE(maxVal, .01); |
|
// absolute difference for distortion and camera matrix |
|
EXPECT_MAT_NEAR(jacobian(cv::Range::all(), cv::Range(6,numParams)), numericJacobian(cv::Range::all(), cv::Range(6,numParams)), 1e-5); |
|
} |
|
} |
|
|
|
TEST_F(cameraCalibrationTiltTest, undistortPoints) |
|
{ |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth( |
|
.2, .1, // k1 k2 |
|
.01, .01, // p1 p2 |
|
.01, .01, .01, .01, // k3 k4 k5 k6 |
|
.001, .001, .001, .001, // s1 s2 s3 s4 |
|
.001, .001); // tauX tauY |
|
double step = 99; |
|
double toleranceBackProjection = 1e-5; |
|
|
|
for (size_t numTest = 0; numTest < 10; ++numTest) |
|
{ |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff; |
|
randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth); |
|
|
|
// distorted points |
|
std::vector<cv::Point2d> distorted; |
|
for (double x = 0; x <= m_imageSize.width-1; x += step) |
|
for (double y = 0; y <= m_imageSize.height-1; y += step) |
|
distorted.push_back(cv::Point2d(x,y)); |
|
std::vector<cv::Point2d> normalizedUndistorted; |
|
|
|
// undistort |
|
cv::undistortPoints(distorted, |
|
normalizedUndistorted, |
|
m_cameraMatrix, |
|
distortionCoeff); |
|
|
|
// copy normalized points to 3D |
|
std::vector<cv::Point3d> objectPoints; |
|
for (std::vector<cv::Point2d>::const_iterator itPnt = normalizedUndistorted.begin(); |
|
itPnt != normalizedUndistorted.end(); ++itPnt) |
|
objectPoints.push_back(cv::Point3d(itPnt->x, itPnt->y, 1)); |
|
|
|
// project |
|
std::vector<cv::Point2d> imagePoints(objectPoints.size()); |
|
cv::projectPoints(objectPoints, |
|
cv::Vec3d(0,0,0), |
|
cv::Vec3d(0,0,0), |
|
m_cameraMatrix, |
|
distortionCoeff, |
|
imagePoints); |
|
|
|
EXPECT_MAT_NEAR(distorted, imagePoints, toleranceBackProjection); |
|
} |
|
} |
|
|
|
template <typename INPUT, typename ESTIMATE> |
|
void show(const std::string& name, const INPUT in, const ESTIMATE est) |
|
{ |
|
std::cout << name << " = " << est << " (init = " << in |
|
<< ", diff = " << est-in << ")\n"; |
|
} |
|
|
|
template <typename INPUT> |
|
void showVec(const std::string& name, const INPUT& in, const cv::Mat& est) |
|
{ |
|
|
|
for (size_t i = 0; i < in.channels; ++i) |
|
{ |
|
std::stringstream ss; |
|
ss << name << "[" << i << "]"; |
|
show(ss.str(), in(i), est.at<double>(i)); |
|
} |
|
} |
|
|
|
/** |
|
For given camera matrix and distortion coefficients |
|
- project point target in different positions onto the sensor |
|
- add pixel noise |
|
- estimate camera model with noisy measurements |
|
- compare result with initial model parameter |
|
|
|
Parameter are differently affected by the noise |
|
*/ |
|
TEST_F(cameraCalibrationTiltTest, calibrateCamera) |
|
{ |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth( |
|
.2, .1, // k1 k2 |
|
.01, .01, // p1 p2 |
|
0, 0, 0, 0, // k3 k4 k5 k6 |
|
.001, .001, .001, .001, // s1 s2 s3 s4 |
|
.001, .001); // tauX tauY |
|
double pixelNoiseHalfWidth = .5; |
|
std::vector<cv::Point3f> pointTarget; |
|
pointTarget.reserve(m_pointTarget.size()); |
|
for (std::vector<cv::Point3d>::const_iterator it = m_pointTarget.begin(); it != m_pointTarget.end(); ++it) |
|
pointTarget.push_back(cv::Point3f( |
|
(float)(it->x), |
|
(float)(it->y), |
|
(float)(it->z))); |
|
|
|
for (size_t numTest = 0; numTest < 5; ++numTest) |
|
{ |
|
// create random distortion coefficients |
|
cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff; |
|
randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth); |
|
|
|
// container for calibration data |
|
std::vector<std::vector<cv::Point3f> > viewsObjectPoints; |
|
std::vector<std::vector<cv::Point2f> > viewsImagePoints; |
|
std::vector<std::vector<cv::Point2f> > viewsNoisyImagePoints; |
|
|
|
// simulate calibration data with projectPoints |
|
std::vector<cv::Vec3d>::const_iterator itRvec = m_pointTargetRvec.begin(); |
|
std::vector<cv::Vec3d>::const_iterator itTvec = m_pointTargetTvec.begin(); |
|
// loop over different views |
|
for (;itRvec != m_pointTargetRvec.end(); ++ itRvec, ++itTvec) |
|
{ |
|
std::vector<cv::Point3f> objectPoints(pointTarget); |
|
std::vector<cv::Point2f> imagePoints; |
|
std::vector<cv::Point2f> noisyImagePoints; |
|
// project calibration target to sensor |
|
cv::projectPoints( |
|
objectPoints, |
|
*itRvec, |
|
*itTvec, |
|
m_cameraMatrix, |
|
distortionCoeff, |
|
imagePoints); |
|
// remove invisible points |
|
addNoiseRemoveInvalidPoints( |
|
imagePoints, |
|
objectPoints, |
|
noisyImagePoints, |
|
pixelNoiseHalfWidth); |
|
// add data for view |
|
viewsNoisyImagePoints.push_back(noisyImagePoints); |
|
viewsImagePoints.push_back(imagePoints); |
|
viewsObjectPoints.push_back(objectPoints); |
|
} |
|
|
|
// Output |
|
std::vector<cv::Mat> outRvecs, outTvecs; |
|
cv::Mat outCameraMatrix(3, 3, CV_64F, cv::Scalar::all(1)), outDistCoeff; |
|
|
|
// Stopping criteria |
|
cv::TermCriteria stop( |
|
cv::TermCriteria::COUNT+cv::TermCriteria::EPS, |
|
50000, |
|
1e-14); |
|
// model choice |
|
int flag = |
|
cv::CALIB_FIX_ASPECT_RATIO | |
|
// cv::CALIB_RATIONAL_MODEL | |
|
cv::CALIB_FIX_K3 | |
|
// cv::CALIB_FIX_K6 | |
|
cv::CALIB_THIN_PRISM_MODEL | |
|
cv::CALIB_TILTED_MODEL; |
|
// estimate |
|
double backProjErr = cv::calibrateCamera( |
|
viewsObjectPoints, |
|
viewsNoisyImagePoints, |
|
m_imageSize, |
|
outCameraMatrix, |
|
outDistCoeff, |
|
outRvecs, |
|
outTvecs, |
|
flag, |
|
stop); |
|
|
|
EXPECT_LE(backProjErr, pixelNoiseHalfWidth); |
|
|
|
#if 0 |
|
std::cout << "------ estimate ------\n"; |
|
std::cout << "back projection error = " << backProjErr << "\n"; |
|
std::cout << "points per view = {" << viewsObjectPoints.front().size(); |
|
for (size_t i = 1; i < viewsObjectPoints.size(); ++i) |
|
std::cout << ", " << viewsObjectPoints[i].size(); |
|
std::cout << "}\n"; |
|
show("fx", m_cameraMatrix(0,0), outCameraMatrix.at<double>(0,0)); |
|
show("fy", m_cameraMatrix(1,1), outCameraMatrix.at<double>(1,1)); |
|
show("cx", m_cameraMatrix(0,2), outCameraMatrix.at<double>(0,2)); |
|
show("cy", m_cameraMatrix(1,2), outCameraMatrix.at<double>(1,2)); |
|
showVec("distor", distortionCoeff, outDistCoeff); |
|
#endif |
|
if (pixelNoiseHalfWidth > 0) |
|
{ |
|
double tolRvec = pixelNoiseHalfWidth; |
|
double tolTvec = m_objectDistance * tolRvec; |
|
// back projection error |
|
for (size_t i = 0; i < viewsNoisyImagePoints.size(); ++i) |
|
{ |
|
double dRvec = cv::norm(m_pointTargetRvec[i], |
|
cv::Vec3d(outRvecs[i].at<double>(0), outRvecs[i].at<double>(1), outRvecs[i].at<double>(2)) |
|
); |
|
EXPECT_LE(dRvec, tolRvec); |
|
double dTvec = cv::norm(m_pointTargetTvec[i], |
|
cv::Vec3d(outTvecs[i].at<double>(0), outTvecs[i].at<double>(1), outTvecs[i].at<double>(2)) |
|
); |
|
EXPECT_LE(dTvec, tolTvec); |
|
|
|
std::vector<cv::Point2f> backProjection; |
|
cv::projectPoints( |
|
viewsObjectPoints[i], |
|
outRvecs[i], |
|
outTvecs[i], |
|
outCameraMatrix, |
|
outDistCoeff, |
|
backProjection); |
|
EXPECT_MAT_NEAR(backProjection, viewsNoisyImagePoints[i], 1.5*pixelNoiseHalfWidth); |
|
EXPECT_MAT_NEAR(backProjection, viewsImagePoints[i], 1.5*pixelNoiseHalfWidth); |
|
} |
|
} |
|
pixelNoiseHalfWidth *= .25; |
|
} |
|
} |
|
|
|
}} // namespace
|
|
|