Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
11 KiB
350 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Peng Xiao, pengxiao@outlook.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include <iomanip> |
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
static bool use_cpu_sorter = true; |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
///////////////////////////OpenCL kernel strings/////////////////////////// |
|
extern const char *imgproc_gftt; |
|
} |
|
} |
|
|
|
namespace |
|
{ |
|
enum SortMethod |
|
{ |
|
CPU_STL, |
|
BITONIC, |
|
SELECTION |
|
}; |
|
|
|
const int GROUP_SIZE = 256; |
|
|
|
template<SortMethod method> |
|
struct Sorter |
|
{ |
|
//typedef EigType; |
|
}; |
|
|
|
//TODO(pengx): optimize GPU sorter's performance thus CPU sorter is removed. |
|
template<> |
|
struct Sorter<CPU_STL> |
|
{ |
|
typedef oclMat EigType; |
|
static cv::Mutex cs; |
|
static Mat mat_eig; |
|
|
|
//prototype |
|
static int clfloat2Gt(cl_float2 pt1, cl_float2 pt2) |
|
{ |
|
float v1 = mat_eig.at<float>(cvRound(pt1.s[1]), cvRound(pt1.s[0])); |
|
float v2 = mat_eig.at<float>(cvRound(pt2.s[1]), cvRound(pt2.s[0])); |
|
return v1 > v2; |
|
} |
|
static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count) |
|
{ |
|
cv::AutoLock lock(cs); |
|
//temporarily use STL's sort function |
|
Mat mat_corners = corners; |
|
mat_eig = eig_tex; |
|
std::sort(mat_corners.begin<cl_float2>(), mat_corners.begin<cl_float2>() + count, clfloat2Gt); |
|
corners = mat_corners; |
|
} |
|
}; |
|
cv::Mutex Sorter<CPU_STL>::cs; |
|
cv::Mat Sorter<CPU_STL>::mat_eig; |
|
|
|
template<> |
|
struct Sorter<BITONIC> |
|
{ |
|
typedef TextureCL EigType; |
|
|
|
static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count) |
|
{ |
|
Context * cxt = Context::getContext(); |
|
size_t globalThreads[3] = {count / 2, 1, 1}; |
|
size_t localThreads[3] = {GROUP_SIZE, 1, 1}; |
|
|
|
// 2^numStages should be equal to count or the output is invalid |
|
int numStages = 0; |
|
for(int i = count; i > 1; i >>= 1) |
|
{ |
|
++numStages; |
|
} |
|
const int argc = 5; |
|
std::vector< std::pair<size_t, const void *> > args(argc); |
|
std::string kernelname = "sortCorners_bitonicSort"; |
|
args[0] = std::make_pair(sizeof(cl_mem), (void *)&eig_tex); |
|
args[1] = std::make_pair(sizeof(cl_mem), (void *)&corners.data); |
|
args[2] = std::make_pair(sizeof(cl_int), (void *)&count); |
|
for(int stage = 0; stage < numStages; ++stage) |
|
{ |
|
args[3] = std::make_pair(sizeof(cl_int), (void *)&stage); |
|
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage) |
|
{ |
|
args[4] = std::make_pair(sizeof(cl_int), (void *)&passOfStage); |
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
template<> |
|
struct Sorter<SELECTION> |
|
{ |
|
typedef TextureCL EigType; |
|
|
|
static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count) |
|
{ |
|
Context * cxt = Context::getContext(); |
|
|
|
size_t globalThreads[3] = {count, 1, 1}; |
|
size_t localThreads[3] = {GROUP_SIZE, 1, 1}; |
|
|
|
std::vector< std::pair<size_t, const void *> > args; |
|
//local |
|
std::string kernelname = "sortCorners_selectionSortLocal"; |
|
int lds_size = GROUP_SIZE * sizeof(cl_float2); |
|
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&eig_tex) ); |
|
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&corners.data) ); |
|
args.push_back( std::make_pair( sizeof(cl_int), (void*)&count) ); |
|
args.push_back( std::make_pair( lds_size, (void*)NULL) ); |
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
|
|
//final |
|
kernelname = "sortCorners_selectionSortFinal"; |
|
args.pop_back(); |
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
} |
|
}; |
|
|
|
int findCorners_caller( |
|
const TextureCL& eig, |
|
const float threshold, |
|
const oclMat& mask, |
|
oclMat& corners, |
|
const int max_count) |
|
{ |
|
std::vector<int> k; |
|
Context * cxt = Context::getContext(); |
|
|
|
std::vector< std::pair<size_t, const void*> > args; |
|
std::string kernelname = "findCorners"; |
|
|
|
const int mask_strip = mask.step / mask.elemSize1(); |
|
|
|
oclMat g_counter(1, 1, CV_32SC1); |
|
g_counter.setTo(0); |
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&eig )); |
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&mask.data )); |
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&corners.data )); |
|
args.push_back(make_pair( sizeof(cl_int), (void*)&mask_strip)); |
|
args.push_back(make_pair( sizeof(cl_float), (void*)&threshold )); |
|
args.push_back(make_pair( sizeof(cl_int), (void*)&eig.rows )); |
|
args.push_back(make_pair( sizeof(cl_int), (void*)&eig.cols )); |
|
args.push_back(make_pair( sizeof(cl_int), (void*)&max_count )); |
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&g_counter.data )); |
|
|
|
size_t globalThreads[3] = {eig.cols, eig.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
const char * opt = mask.empty() ? "" : "-D WITH_MASK"; |
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1, opt); |
|
return std::min(Mat(g_counter).at<int>(0), max_count); |
|
} |
|
}//unnamed namespace |
|
|
|
void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, oclMat& corners, const oclMat& mask) |
|
{ |
|
CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0); |
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size())); |
|
|
|
CV_DbgAssert(support_image2d()); |
|
|
|
ensureSizeIsEnough(image.size(), CV_32F, eig_); |
|
|
|
if (useHarrisDetector) |
|
cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK); |
|
else |
|
cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3); |
|
|
|
double maxVal = 0; |
|
minMax(eig_, NULL, &maxVal); |
|
|
|
ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_); |
|
|
|
Ptr<TextureCL> eig_tex = bindTexturePtr(eig_); |
|
int total = findCorners_caller( |
|
*eig_tex, |
|
static_cast<float>(maxVal * qualityLevel), |
|
mask, |
|
tmpCorners_, |
|
tmpCorners_.cols); |
|
|
|
if (total == 0) |
|
{ |
|
corners.release(); |
|
return; |
|
} |
|
if(use_cpu_sorter) |
|
{ |
|
Sorter<CPU_STL>::sortCorners_caller(eig_, tmpCorners_, total); |
|
} |
|
else |
|
{ |
|
//if total is power of 2 |
|
if(((total - 1) & (total)) == 0) |
|
{ |
|
Sorter<BITONIC>::sortCorners_caller(*eig_tex, tmpCorners_, total); |
|
} |
|
else |
|
{ |
|
Sorter<SELECTION>::sortCorners_caller(*eig_tex, tmpCorners_, total); |
|
} |
|
} |
|
|
|
if (minDistance < 1) |
|
{ |
|
Rect roi_range(0, 0, maxCorners > 0 ? std::min(maxCorners, total) : total, 1); |
|
tmpCorners_(roi_range).copyTo(corners); |
|
} |
|
else |
|
{ |
|
vector<Point2f> tmp(total); |
|
downloadPoints(tmpCorners_, tmp); |
|
|
|
vector<Point2f> tmp2; |
|
tmp2.reserve(total); |
|
|
|
const int cell_size = cvRound(minDistance); |
|
const int grid_width = (image.cols + cell_size - 1) / cell_size; |
|
const int grid_height = (image.rows + cell_size - 1) / cell_size; |
|
|
|
std::vector< std::vector<Point2f> > grid(grid_width * grid_height); |
|
|
|
for (int i = 0; i < total; ++i) |
|
{ |
|
Point2f p = tmp[i]; |
|
|
|
bool good = true; |
|
|
|
int x_cell = static_cast<int>(p.x / cell_size); |
|
int y_cell = static_cast<int>(p.y / cell_size); |
|
|
|
int x1 = x_cell - 1; |
|
int y1 = y_cell - 1; |
|
int x2 = x_cell + 1; |
|
int y2 = y_cell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(grid_width - 1, x2); |
|
y2 = std::min(grid_height - 1, y2); |
|
|
|
for (int yy = y1; yy <= y2; yy++) |
|
{ |
|
for (int xx = x1; xx <= x2; xx++) |
|
{ |
|
vector<Point2f>& m = grid[yy * grid_width + xx]; |
|
|
|
if (!m.empty()) |
|
{ |
|
for(size_t j = 0; j < m.size(); j++) |
|
{ |
|
float dx = p.x - m[j].x; |
|
float dy = p.y - m[j].y; |
|
|
|
if (dx * dx + dy * dy < minDistance * minDistance) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if(good) |
|
{ |
|
grid[y_cell * grid_width + x_cell].push_back(p); |
|
|
|
tmp2.push_back(p); |
|
|
|
if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners)) |
|
break; |
|
} |
|
} |
|
|
|
corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0])); |
|
} |
|
} |
|
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, vector<Point2f> &points_v) |
|
{ |
|
CV_DbgAssert(points.type() == CV_32FC2); |
|
points_v.resize(points.cols); |
|
openCLSafeCall(clEnqueueReadBuffer( |
|
*reinterpret_cast<cl_command_queue*>(getoclCommandQueue()), |
|
reinterpret_cast<cl_mem>(points.data), |
|
CL_TRUE, |
|
0, |
|
points.cols * sizeof(Point2f), |
|
&points_v[0], |
|
0, |
|
NULL, |
|
NULL)); |
|
}
|
|
|