mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
9.7 KiB
293 lines
9.7 KiB
#include "perf_precomp.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/opencv_modules.hpp" |
|
#include "opencv2/flann.hpp" |
|
|
|
namespace opencv_test |
|
{ |
|
using namespace perf; |
|
|
|
typedef TestBaseWithParam<size_t> FeaturesFinderVec; |
|
typedef TestBaseWithParam<string> match; |
|
typedef tuple<string, int> matchVector_t; |
|
typedef TestBaseWithParam<matchVector_t> matchVector; |
|
|
|
#define NUMBER_IMAGES testing::Values(1, 5, 20) |
|
#define SURF_MATCH_CONFIDENCE 0.65f |
|
#define ORB_MATCH_CONFIDENCE 0.3f |
|
#define WORK_MEGAPIX 0.6 |
|
|
|
#if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE) |
|
#define TEST_DETECTORS testing::Values("surf", "orb") |
|
#else |
|
#define TEST_DETECTORS testing::Values<string>("orb") |
|
#endif |
|
|
|
PERF_TEST_P(FeaturesFinderVec, ParallelFeaturesFinder, NUMBER_IMAGES) |
|
{ |
|
Mat img = imread( getDataPath("stitching/a1.png") ); |
|
vector<Mat> imgs(GetParam(), img); |
|
vector<detail::ImageFeatures> features(imgs.size()); |
|
|
|
Ptr<Feature2D> finder = ORB::create(); |
|
|
|
TEST_CYCLE() |
|
{ |
|
detail::computeImageFeatures(finder, imgs, features); |
|
} |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
PERF_TEST_P(FeaturesFinderVec, SerialFeaturesFinder, NUMBER_IMAGES) |
|
{ |
|
Mat img = imread( getDataPath("stitching/a1.png") ); |
|
vector<Mat> imgs(GetParam(), img); |
|
vector<detail::ImageFeatures> features(imgs.size()); |
|
|
|
Ptr<Feature2D> finder = ORB::create(); |
|
|
|
TEST_CYCLE() |
|
{ |
|
for (size_t i = 0; i < imgs.size(); ++i) |
|
detail::computeImageFeatures(finder, imgs[i], features[i]); |
|
} |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS) |
|
{ |
|
Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") ); |
|
Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") ); |
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); |
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); |
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); |
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); |
|
|
|
Ptr<Feature2D> finder = getFeatureFinder(GetParam()); |
|
Ptr<detail::FeaturesMatcher> matcher; |
|
if (GetParam() == "surf") |
|
{ |
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE); |
|
} |
|
else if (GetParam() == "orb") |
|
{ |
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE); |
|
} |
|
else |
|
{ |
|
FAIL() << "Unknown 2D features type: " << GetParam(); |
|
} |
|
|
|
detail::ImageFeatures features1, features2; |
|
detail::computeImageFeatures(finder, img1, features1); |
|
detail::computeImageFeatures(finder, img2, features2); |
|
|
|
detail::MatchesInfo pairwise_matches; |
|
|
|
declare.in(features1.descriptors, features2.descriptors); |
|
|
|
while(next()) |
|
{ |
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher |
|
startTimer(); |
|
(*matcher)(features1, features2, pairwise_matches); |
|
stopTimer(); |
|
matcher->collectGarbage(); |
|
} |
|
|
|
Mat dist (pairwise_matches.H, Range::all(), Range(2, 3)); |
|
Mat R (pairwise_matches.H, Range::all(), Range(0, 2)); |
|
// separate transform matrix, use lower error on rotations |
|
SANITY_CHECK(dist, 3., ERROR_ABSOLUTE); |
|
SANITY_CHECK(R, .06, ERROR_ABSOLUTE); |
|
} |
|
|
|
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine( |
|
TEST_DETECTORS, |
|
testing::Values(2, 4, 8)) |
|
) |
|
{ |
|
Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") ); |
|
Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") ); |
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); |
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); |
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); |
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); |
|
|
|
string detectorName = get<0>(GetParam()); |
|
int featuresVectorSize = get<1>(GetParam()); |
|
Ptr<Feature2D> finder = getFeatureFinder(detectorName); |
|
Ptr<detail::FeaturesMatcher> matcher; |
|
if (detectorName == "surf") |
|
{ |
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE); |
|
} |
|
else if (detectorName == "orb") |
|
{ |
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE); |
|
} |
|
else |
|
{ |
|
FAIL() << "Unknown 2D features type: " << get<0>(GetParam()); |
|
} |
|
|
|
detail::ImageFeatures features1, features2; |
|
detail::computeImageFeatures(finder, img1, features1); |
|
detail::computeImageFeatures(finder, img2, features2); |
|
vector<detail::ImageFeatures> features; |
|
vector<detail::MatchesInfo> pairwise_matches; |
|
for(int i = 0; i < featuresVectorSize/2; i++) |
|
{ |
|
features.push_back(features1); |
|
features.push_back(features2); |
|
} |
|
|
|
declare.time(200); |
|
while(next()) |
|
{ |
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher |
|
startTimer(); |
|
(*matcher)(features, pairwise_matches); |
|
stopTimer(); |
|
matcher->collectGarbage(); |
|
} |
|
|
|
size_t matches_count = 0; |
|
for (size_t i = 0; i < pairwise_matches.size(); ++i) |
|
{ |
|
if (pairwise_matches[i].src_img_idx < 0) |
|
continue; |
|
|
|
EXPECT_GT(pairwise_matches[i].matches.size(), 95u); |
|
EXPECT_FALSE(pairwise_matches[i].H.empty()); |
|
++matches_count; |
|
} |
|
|
|
EXPECT_GT(matches_count, 0u); |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
PERF_TEST_P( match, affineBestOf2Nearest, TEST_DETECTORS) |
|
{ |
|
Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") ); |
|
Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") ); |
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); |
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); |
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); |
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); |
|
|
|
Ptr<Feature2D> finder = getFeatureFinder(GetParam()); |
|
Ptr<detail::FeaturesMatcher> matcher; |
|
if (GetParam() == "surf") |
|
{ |
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE); |
|
} |
|
else if (GetParam() == "orb") |
|
{ |
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE); |
|
} |
|
else |
|
{ |
|
FAIL() << "Unknown 2D features type: " << GetParam(); |
|
} |
|
|
|
detail::ImageFeatures features1, features2; |
|
detail::computeImageFeatures(finder, img1, features1); |
|
detail::computeImageFeatures(finder, img2, features2); |
|
|
|
detail::MatchesInfo pairwise_matches; |
|
|
|
declare.in(features1.descriptors, features2.descriptors); |
|
|
|
while(next()) |
|
{ |
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher |
|
startTimer(); |
|
(*matcher)(features1, features2, pairwise_matches); |
|
stopTimer(); |
|
matcher->collectGarbage(); |
|
} |
|
|
|
// separate rotation and translation in transform matrix |
|
Mat T (pairwise_matches.H, Range(0, 2), Range(2, 3)); |
|
Mat R (pairwise_matches.H, Range(0, 2), Range(0, 2)); |
|
Mat h (pairwise_matches.H, Range(2, 3), Range::all()); |
|
SANITY_CHECK(T, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations |
|
SANITY_CHECK(R, .01, ERROR_ABSOLUTE); // rotations must be more precise |
|
// last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous |
|
// coordinates |
|
EXPECT_DOUBLE_EQ(h.at<double>(0), 0.); |
|
EXPECT_DOUBLE_EQ(h.at<double>(1), 0.); |
|
EXPECT_DOUBLE_EQ(h.at<double>(2), 1.); |
|
} |
|
|
|
PERF_TEST_P( matchVector, affineBestOf2NearestVectorFeatures, testing::Combine( |
|
TEST_DETECTORS, |
|
testing::Values(2, 4, 8)) |
|
) |
|
{ |
|
Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") ); |
|
Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") ); |
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); |
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); |
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); |
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); |
|
|
|
string detectorName = get<0>(GetParam()); |
|
int featuresVectorSize = get<1>(GetParam()); |
|
Ptr<Feature2D> finder = getFeatureFinder(detectorName); |
|
Ptr<detail::FeaturesMatcher> matcher; |
|
if (detectorName == "surf") |
|
{ |
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE); |
|
} |
|
else if (detectorName == "orb") |
|
{ |
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE); |
|
} |
|
else |
|
{ |
|
FAIL() << "Unknown 2D features type: " << get<0>(GetParam()); |
|
} |
|
|
|
detail::ImageFeatures features1, features2; |
|
detail::computeImageFeatures(finder, img1, features1); |
|
detail::computeImageFeatures(finder, img2, features2); |
|
vector<detail::ImageFeatures> features; |
|
vector<detail::MatchesInfo> pairwise_matches; |
|
for(int i = 0; i < featuresVectorSize/2; i++) |
|
{ |
|
features.push_back(features1); |
|
features.push_back(features2); |
|
} |
|
|
|
declare.time(200); |
|
while(next()) |
|
{ |
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher |
|
startTimer(); |
|
(*matcher)(features, pairwise_matches); |
|
stopTimer(); |
|
matcher->collectGarbage(); |
|
} |
|
|
|
size_t matches_count = 0; |
|
for (size_t i = 0; i < pairwise_matches.size(); ++i) |
|
{ |
|
if (pairwise_matches[i].src_img_idx < 0) |
|
continue; |
|
|
|
EXPECT_GT(pairwise_matches[i].matches.size(), 150u); |
|
EXPECT_FALSE(pairwise_matches[i].H.empty()); |
|
++matches_count; |
|
} |
|
|
|
EXPECT_GT(matches_count, 0u); |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
} // namespace
|
|
|