mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
252 lines
7.4 KiB
252 lines
7.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
/* ///////////////////// pyrlk_test ///////////////////////// */ |
|
|
|
class CV_OptFlowPyrLKTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_OptFlowPyrLKTest(); |
|
protected: |
|
void run(int); |
|
}; |
|
|
|
|
|
CV_OptFlowPyrLKTest::CV_OptFlowPyrLKTest() {} |
|
|
|
void CV_OptFlowPyrLKTest::run( int ) |
|
{ |
|
int code = cvtest::TS::OK; |
|
|
|
const double success_error_level = 0.3; |
|
const int bad_points_max = 8; |
|
|
|
/* test parameters */ |
|
double max_err = 0.; |
|
int pt_exceed = 0; |
|
int merr_i = 0, merr_nan = 0; |
|
char filename[1000]; |
|
|
|
cv::Point2f *v = 0, *v2 = 0; |
|
cv::Mat _u, _v, _v2; |
|
|
|
cv::Mat imgI, imgJ; |
|
|
|
int n = 0, i = 0; |
|
|
|
for(;;) |
|
{ |
|
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "lk_prev.dat" ); |
|
|
|
{ |
|
FileStorage fs(filename, FileStorage::READ); |
|
fs["points"] >> _u; |
|
if( _u.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); |
|
code = cvtest::TS::FAIL_MISSING_TEST_DATA; |
|
break; |
|
} |
|
} |
|
|
|
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "lk_next.dat" ); |
|
|
|
{ |
|
FileStorage fs(filename, FileStorage::READ); |
|
fs["points"] >> _v; |
|
if( _v.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); |
|
code = cvtest::TS::FAIL_MISSING_TEST_DATA; |
|
break; |
|
} |
|
} |
|
|
|
if( _u.cols != 2 || _u.type() != CV_32F || |
|
_v.cols != 2 || _v.type() != CV_32F || |
|
_v.rows != _u.rows ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the loaded matrices of points are not valid\n" ); |
|
code = cvtest::TS::FAIL_MISSING_TEST_DATA; |
|
break; |
|
|
|
} |
|
|
|
/* read first image */ |
|
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "rock_1.bmp" ); |
|
imgI = cv::imread( filename, cv::IMREAD_UNCHANGED ); |
|
|
|
if( imgI.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); |
|
code = cvtest::TS::FAIL_MISSING_TEST_DATA; |
|
break; |
|
} |
|
|
|
/* read second image */ |
|
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "rock_2.bmp" ); |
|
imgJ = cv::imread( filename, cv::IMREAD_UNCHANGED ); |
|
|
|
if( imgJ.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); |
|
code = cvtest::TS::FAIL_MISSING_TEST_DATA; |
|
break; |
|
} |
|
|
|
n = _u.rows; |
|
std::vector<uchar> status(n, (uchar)0); |
|
|
|
/* calculate flow */ |
|
calcOpticalFlowPyrLK(imgI, imgJ, _u, _v2, status, cv::noArray(), Size( 41, 41 ), 4, |
|
TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 30, 0.01f ), 0 ); |
|
|
|
v = (cv::Point2f*)_v.ptr(); |
|
v2 = (cv::Point2f*)_v2.ptr(); |
|
|
|
/* compare results */ |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
if( status[i] != 0 ) |
|
{ |
|
double err; |
|
if( cvIsNaN(v[i].x) || cvIsNaN(v[i].y) ) |
|
{ |
|
continue; |
|
} |
|
|
|
if( cvIsNaN(v2[i].x) || cvIsNaN(v2[i].y) ) |
|
{ |
|
merr_nan++; |
|
continue; |
|
} |
|
|
|
err = fabs(v2[i].x - v[i].x) + fabs(v2[i].y - v[i].y); |
|
if( err > max_err ) |
|
{ |
|
max_err = err; |
|
merr_i = i; |
|
} |
|
|
|
pt_exceed += err > success_error_level; |
|
} |
|
else |
|
{ |
|
if( !cvIsNaN( v[i].x )) |
|
{ |
|
merr_i = i; |
|
ts->printf( cvtest::TS::LOG, "The algorithm lost the point #%d\n", i ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
break; |
|
} |
|
} |
|
} |
|
if( i < n ) |
|
break; |
|
|
|
if( pt_exceed > bad_points_max ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"The number of poorly tracked points is too big (>=%d)\n", pt_exceed ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
break; |
|
} |
|
|
|
if( max_err > 1 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Maximum tracking error is too big (=%g) at %d\n", max_err, merr_i ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
break; |
|
} |
|
|
|
if( merr_nan > 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "NAN tracking result with status != 0 (%d times)\n", merr_nan ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
break; |
|
} |
|
|
|
if( code < 0 ) |
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
|
|
TEST(Video_OpticalFlowPyrLK, accuracy) { CV_OptFlowPyrLKTest test; test.safe_run(); } |
|
|
|
TEST(Video_OpticalFlowPyrLK, submat) |
|
{ |
|
// see bug #2075 |
|
std::string path = cvtest::TS::ptr()->get_data_path() + "../cv/shared/lena.png"; |
|
|
|
cv::Mat lenaImg = cv::imread(path); |
|
ASSERT_FALSE(lenaImg.empty()); |
|
|
|
cv::Mat wholeImage; |
|
cv::resize(lenaImg, wholeImage, cv::Size(1024, 1024), 0, 0, cv::INTER_LINEAR_EXACT); |
|
|
|
cv::Mat img1 = wholeImage(cv::Rect(0, 0, 640, 360)).clone(); |
|
cv::Mat img2 = wholeImage(cv::Rect(40, 60, 640, 360)); |
|
|
|
std::vector<uchar> status; |
|
std::vector<float> error; |
|
std::vector<cv::Point2f> prev; |
|
std::vector<cv::Point2f> next; |
|
|
|
cv::RNG rng(123123); |
|
|
|
for(int i = 0; i < 50; ++i) |
|
{ |
|
int x = rng.uniform(0, 640); |
|
int y = rng.uniform(0, 360); |
|
|
|
prev.push_back(cv::Point2f((float)x, (float)y)); |
|
} |
|
|
|
ASSERT_NO_THROW(cv::calcOpticalFlowPyrLK(img1, img2, prev, next, status, error)); |
|
} |
|
|
|
}} // namespace
|
|
|