mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.2 KiB
180 lines
6.2 KiB
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/objdetect.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/softcascade.hpp> |
|
|
|
#include <iostream> |
|
#include <vector> |
|
#include <string> |
|
#include <fstream> |
|
|
|
void filter_rects(const std::vector<cv::Rect>& candidates, std::vector<cv::Rect>& objects); |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
const std::string keys = |
|
"{help h usage ? | | print this message and exit }" |
|
"{cascade c | | path to cascade xml, if empty HOG detector will be executed }" |
|
"{frame f | | wildchart pattern to frame source}" |
|
"{min_scale |0.4 | minimum scale to detect }" |
|
"{max_scale |5.0 | maxamum scale to detect }" |
|
"{total_scales |55 | prefered number of scales between min and max }" |
|
"{write_file wf |0 | write to .txt. Disabled by default.}" |
|
"{write_image wi |0 | write to image. Disabled by default.}" |
|
"{show_image si |1 | show image. Enabled by default.}" |
|
"{threshold thr |-1 | detection threshold. Detections with score less then threshold will be ignored.}" |
|
; |
|
|
|
cv::CommandLineParser parser(argc, argv, keys); |
|
parser.about("Soft cascade training application."); |
|
|
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
|
|
int wf = parser.get<int>("write_file"); |
|
if (wf) std::cout << "resulte will be stored to .txt file with the same name as image." << std::endl; |
|
|
|
int wi = parser.get<int>("write_image"); |
|
if (wi) std::cout << "resulte will be stored to image with the same name as input plus dt." << std::endl; |
|
|
|
int si = parser.get<int>("show_image"); |
|
|
|
float minScale = parser.get<float>("min_scale"); |
|
float maxScale = parser.get<float>("max_scale"); |
|
int scales = parser.get<int>("total_scales"); |
|
int thr = parser.get<int>("threshold"); |
|
|
|
cv::HOGDescriptor hog; |
|
cv::softcascade::Detector cascade; |
|
|
|
bool useHOG = false; |
|
std::string cascadePath = parser.get<std::string>("cascade"); |
|
if (cascadePath.empty()) |
|
{ |
|
useHOG = true; |
|
hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector()); |
|
std::cout << "going to use HOG detector." << std::endl; |
|
} |
|
else |
|
{ |
|
cv::FileStorage fs(cascadePath, cv::FileStorage::READ); |
|
if( !fs.isOpened()) |
|
{ |
|
std::cout << "Soft Cascade file " << cascadePath << " can't be opened." << std::endl << std::flush; |
|
return 1; |
|
} |
|
|
|
cascade = cv::softcascade::Detector(minScale, maxScale, scales, cv::softcascade::Detector::DOLLAR); |
|
|
|
if (!cascade.load(fs.getFirstTopLevelNode())) |
|
{ |
|
std::cout << "Soft Cascade can't be parsed." << std::endl << std::flush; |
|
return 1; |
|
} |
|
} |
|
|
|
std::string src = parser.get<std::string>("frame"); |
|
std::vector<std::string> frames; |
|
cv::glob(parser.get<std::string>("frame"), frames); |
|
std::cout << "collected " << src << " " << frames.size() << " frames." << std::endl; |
|
|
|
for (int i = 0; i < (int)frames.size(); ++i) |
|
{ |
|
std::string& frame_sourse = frames[i]; |
|
cv::Mat frame = cv::imread(frame_sourse); |
|
|
|
if(frame.empty()) |
|
{ |
|
std::cout << "Frame source " << frame_sourse << " can't be opened." << std::endl << std::flush; |
|
continue; |
|
} |
|
|
|
std::ofstream myfile; |
|
if (wf) |
|
myfile.open((frame_sourse.replace(frame_sourse.end() - 3, frame_sourse.end(), "txt")).c_str(), std::ios::out); |
|
|
|
//// |
|
if (useHOG) |
|
{ |
|
std::vector<cv::Rect> found, found_filtered; |
|
// run the detector with default parameters. to get a higher hit-rate |
|
// (and more false alarms, respectively), decrease the hitThreshold and |
|
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely). |
|
hog.detectMultiScale(frame, found, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 2); |
|
|
|
filter_rects(found, found_filtered); |
|
std::cout << "collected: " << (int)found_filtered.size() << " detections." << std::endl; |
|
|
|
for (size_t ff = 0; ff < found_filtered.size(); ++ff) |
|
{ |
|
cv::Rect r = found_filtered[ff]; |
|
cv::rectangle(frame, r.tl(), r.br(), cv::Scalar(0,255,0), 3); |
|
|
|
if (wf) myfile << r.x << "," << r.y << "," << r.width << "," << r.height << "," << 0.f << "\n"; |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::softcascade::Detection> objects; |
|
cascade.detect(frame, cv::noArray(), objects); |
|
std::cout << "collected: " << (int)objects.size() << " detections." << std::endl; |
|
|
|
for (int obj = 0; obj < (int)objects.size(); ++obj) |
|
{ |
|
cv::softcascade::Detection d = objects[obj]; |
|
|
|
if(d.confidence > thr) |
|
{ |
|
float b = d.confidence * 1.5f; |
|
|
|
std::stringstream conf(std::stringstream::in | std::stringstream::out); |
|
conf << d.confidence; |
|
|
|
cv::rectangle(frame, cv::Rect(d.bb.x, d.bb.y, d.bb.width, d.bb.height), cv::Scalar(b, 0, 255 - b, 255), 2); |
|
cv::putText(frame, conf.str() , cv::Point(d.bb.x + 10, d.bb.y - 5),1, 1.1, cv::Scalar(25, 133, 255, 0), 1, CV_AA); |
|
|
|
if (wf) |
|
myfile << d.bb.x << "," << d.bb.y << "," |
|
<< d.bb.width << "," << d.bb.height << "," << d.confidence << "\n"; |
|
} |
|
} |
|
} |
|
|
|
if (wi) cv::imwrite(frame_sourse + ".dt.png", frame); |
|
if (wf) myfile.close(); |
|
|
|
if (si) |
|
{ |
|
cv::imshow("pedestrian detector", frame); |
|
cv::waitKey(10); |
|
} |
|
} |
|
|
|
if (si) cv::waitKey(0); |
|
return 0; |
|
} |
|
|
|
void filter_rects(const std::vector<cv::Rect>& candidates, std::vector<cv::Rect>& objects) |
|
{ |
|
size_t i, j; |
|
for (i = 0; i < candidates.size(); ++i) |
|
{ |
|
cv::Rect r = candidates[i]; |
|
|
|
for (j = 0; j < candidates.size(); ++j) |
|
if (j != i && (r & candidates[j]) == r) |
|
break; |
|
|
|
if (j == candidates.size()) |
|
objects.push_back(r); |
|
} |
|
}
|
|
|