mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
363 lines
10 KiB
363 lines
10 KiB
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
|
|
struct KeypointIdxCompare |
|
{ |
|
std::vector<cv::KeyPoint>* keypoints; |
|
|
|
explicit KeypointIdxCompare(std::vector<cv::KeyPoint>* _keypoints) : keypoints(_keypoints) {} |
|
|
|
bool operator ()(size_t i1, size_t i2) const |
|
{ |
|
cv::KeyPoint kp1 = (*keypoints)[i1]; |
|
cv::KeyPoint kp2 = (*keypoints)[i2]; |
|
if (kp1.pt.x != kp2.pt.x) |
|
return kp1.pt.x < kp2.pt.x; |
|
if (kp1.pt.y != kp2.pt.y) |
|
return kp1.pt.y < kp2.pt.y; |
|
if (kp1.response != kp2.response) |
|
return kp1.response < kp2.response; |
|
return kp1.octave < kp2.octave; |
|
} |
|
}; |
|
|
|
static void sortKeyPoints(std::vector<cv::KeyPoint>& keypoints, cv::InputOutputArray _descriptors = cv::noArray()) |
|
{ |
|
std::vector<size_t> indexies(keypoints.size()); |
|
for (size_t i = 0; i < indexies.size(); ++i) |
|
indexies[i] = i; |
|
|
|
std::sort(indexies.begin(), indexies.end(), KeypointIdxCompare(&keypoints)); |
|
|
|
std::vector<cv::KeyPoint> new_keypoints; |
|
cv::Mat new_descriptors; |
|
|
|
new_keypoints.resize(keypoints.size()); |
|
|
|
cv::Mat descriptors; |
|
if (_descriptors.needed()) |
|
{ |
|
descriptors = _descriptors.getMat(); |
|
new_descriptors.create(descriptors.size(), descriptors.type()); |
|
} |
|
|
|
for (size_t i = 0; i < indexies.size(); ++i) |
|
{ |
|
size_t new_idx = indexies[i]; |
|
new_keypoints[i] = keypoints[new_idx]; |
|
if (!new_descriptors.empty()) |
|
descriptors.row((int) new_idx).copyTo(new_descriptors.row((int) i)); |
|
} |
|
|
|
keypoints.swap(new_keypoints); |
|
if (_descriptors.needed()) |
|
new_descriptors.copyTo(_descriptors); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// SURF |
|
|
|
DEF_PARAM_TEST_1(Image, string); |
|
|
|
PERF_TEST_P(Image, Features2D_SURF, |
|
Values<string>("gpu/perf/aloe.png")) |
|
{ |
|
declare.time(50.0); |
|
|
|
const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::SURF_GPU d_surf; |
|
|
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_keypoints, d_descriptors; |
|
|
|
TEST_CYCLE() d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); |
|
|
|
std::vector<cv::KeyPoint> gpu_keypoints; |
|
d_surf.downloadKeypoints(d_keypoints, gpu_keypoints); |
|
|
|
cv::Mat gpu_descriptors(d_descriptors); |
|
|
|
sortKeyPoints(gpu_keypoints, gpu_descriptors); |
|
|
|
SANITY_CHECK_KEYPOINTS(gpu_keypoints); |
|
SANITY_CHECK(gpu_descriptors, 1e-3); |
|
} |
|
else |
|
{ |
|
cv::SURF surf; |
|
|
|
std::vector<cv::KeyPoint> cpu_keypoints; |
|
cv::Mat cpu_descriptors; |
|
|
|
TEST_CYCLE() surf(img, cv::noArray(), cpu_keypoints, cpu_descriptors); |
|
|
|
SANITY_CHECK_KEYPOINTS(cpu_keypoints); |
|
SANITY_CHECK(cpu_descriptors); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// FAST |
|
|
|
DEF_PARAM_TEST(Image_Threshold_NonMaxSupression, string, int, bool); |
|
|
|
PERF_TEST_P(Image_Threshold_NonMaxSupression, Features2D_FAST, |
|
Combine(Values<string>("gpu/perf/aloe.png"), |
|
Values(20), |
|
Bool())) |
|
{ |
|
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
const int threshold = GET_PARAM(1); |
|
const bool nonMaxSuppersion = GET_PARAM(2); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::FAST_GPU d_fast(threshold, nonMaxSuppersion, 0.5); |
|
|
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_keypoints; |
|
|
|
TEST_CYCLE() d_fast(d_img, cv::gpu::GpuMat(), d_keypoints); |
|
|
|
std::vector<cv::KeyPoint> gpu_keypoints; |
|
d_fast.downloadKeypoints(d_keypoints, gpu_keypoints); |
|
|
|
sortKeyPoints(gpu_keypoints); |
|
|
|
SANITY_CHECK_KEYPOINTS(gpu_keypoints); |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> cpu_keypoints; |
|
|
|
TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion); |
|
|
|
SANITY_CHECK_KEYPOINTS(cpu_keypoints); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ORB |
|
|
|
DEF_PARAM_TEST(Image_NFeatures, string, int); |
|
|
|
PERF_TEST_P(Image_NFeatures, Features2D_ORB, |
|
Combine(Values<string>("gpu/perf/aloe.png"), |
|
Values(4000))) |
|
{ |
|
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
const int nFeatures = GET_PARAM(1); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::ORB_GPU d_orb(nFeatures); |
|
|
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_keypoints, d_descriptors; |
|
|
|
TEST_CYCLE() d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); |
|
|
|
std::vector<cv::KeyPoint> gpu_keypoints; |
|
d_orb.downloadKeyPoints(d_keypoints, gpu_keypoints); |
|
|
|
cv::Mat gpu_descriptors(d_descriptors); |
|
|
|
gpu_keypoints.resize(10); |
|
gpu_descriptors = gpu_descriptors.rowRange(0, 10); |
|
|
|
sortKeyPoints(gpu_keypoints, gpu_descriptors); |
|
|
|
SANITY_CHECK_KEYPOINTS(gpu_keypoints); |
|
SANITY_CHECK(gpu_descriptors); |
|
} |
|
else |
|
{ |
|
cv::ORB orb(nFeatures); |
|
|
|
std::vector<cv::KeyPoint> cpu_keypoints; |
|
cv::Mat cpu_descriptors; |
|
|
|
TEST_CYCLE() orb(img, cv::noArray(), cpu_keypoints, cpu_descriptors); |
|
|
|
SANITY_CHECK_KEYPOINTS(cpu_keypoints); |
|
SANITY_CHECK(cpu_descriptors); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BFMatch |
|
|
|
DEF_PARAM_TEST(DescSize_Norm, int, NormType); |
|
|
|
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, |
|
Combine(Values(64, 128, 256), |
|
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))) |
|
{ |
|
declare.time(20.0); |
|
|
|
const int desc_size = GET_PARAM(0); |
|
const int normType = GET_PARAM(1); |
|
|
|
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
declare.in(query, WARMUP_RNG); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
declare.in(train, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::BFMatcher_GPU d_matcher(normType); |
|
|
|
const cv::gpu::GpuMat d_query(query); |
|
const cv::gpu::GpuMat d_train(train); |
|
cv::gpu::GpuMat d_trainIdx, d_distance; |
|
|
|
TEST_CYCLE() d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance); |
|
|
|
std::vector<cv::DMatch> gpu_matches; |
|
d_matcher.matchDownload(d_trainIdx, d_distance, gpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(gpu_matches); |
|
} |
|
else |
|
{ |
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector<cv::DMatch> cpu_matches; |
|
|
|
TEST_CYCLE() matcher.match(query, train, cpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(cpu_matches); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BFKnnMatch |
|
|
|
static void toOneRowMatches(const std::vector< std::vector<cv::DMatch> >& src, std::vector<cv::DMatch>& dst) |
|
{ |
|
dst.clear(); |
|
for (size_t i = 0; i < src.size(); ++i) |
|
for (size_t j = 0; j < src[i].size(); ++j) |
|
dst.push_back(src[i][j]); |
|
} |
|
|
|
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType); |
|
|
|
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, |
|
Combine(Values(64, 128, 256), |
|
Values(2, 3), |
|
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2)))) |
|
{ |
|
declare.time(30.0); |
|
|
|
const int desc_size = GET_PARAM(0); |
|
const int k = GET_PARAM(1); |
|
const int normType = GET_PARAM(2); |
|
|
|
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
declare.in(query, WARMUP_RNG); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
declare.in(train, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::BFMatcher_GPU d_matcher(normType); |
|
|
|
const cv::gpu::GpuMat d_query(query); |
|
const cv::gpu::GpuMat d_train(train); |
|
cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist; |
|
|
|
TEST_CYCLE() d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
d_matcher.knnMatchDownload(d_trainIdx, d_distance, matchesTbl); |
|
|
|
std::vector<cv::DMatch> gpu_matches; |
|
toOneRowMatches(matchesTbl, gpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(gpu_matches); |
|
} |
|
else |
|
{ |
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
|
|
TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k); |
|
|
|
std::vector<cv::DMatch> cpu_matches; |
|
toOneRowMatches(matchesTbl, cpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(cpu_matches); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BFRadiusMatch |
|
|
|
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, |
|
Combine(Values(64, 128, 256), |
|
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2)))) |
|
{ |
|
declare.time(30.0); |
|
|
|
const int desc_size = GET_PARAM(0); |
|
const int normType = GET_PARAM(1); |
|
|
|
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
const float maxDistance = 10000; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
declare.in(query, WARMUP_RNG); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
declare.in(train, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::BFMatcher_GPU d_matcher(normType); |
|
|
|
const cv::gpu::GpuMat d_query(query); |
|
const cv::gpu::GpuMat d_train(train); |
|
cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance; |
|
|
|
TEST_CYCLE() d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, maxDistance); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
d_matcher.radiusMatchDownload(d_trainIdx, d_distance, d_nMatches, matchesTbl); |
|
|
|
std::vector<cv::DMatch> gpu_matches; |
|
toOneRowMatches(matchesTbl, gpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(gpu_matches); |
|
} |
|
else |
|
{ |
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
|
|
TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance); |
|
|
|
std::vector<cv::DMatch> cpu_matches; |
|
toOneRowMatches(matchesTbl, cpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(cpu_matches); |
|
} |
|
}
|
|
|