mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
549 lines
22 KiB
549 lines
22 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Guoping Long, longguoping@gmail.com |
|
// Niko Li, newlife20080214@gmail.com |
|
// Yao Wang, bitwangyaoyao@gmail.com |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <iomanip> |
|
#include <fstream> |
|
#include "cl_programcache.hpp" |
|
|
|
//#define PRINT_KERNEL_RUN_TIME |
|
#define RUN_TIMES 100 |
|
#ifndef CL_MEM_USE_PERSISTENT_MEM_AMD |
|
#define CL_MEM_USE_PERSISTENT_MEM_AMD 0 |
|
#endif |
|
//#define AMD_DOUBLE_DIFFER |
|
|
|
namespace cv { |
|
namespace ocl { |
|
|
|
DevMemType gDeviceMemType = DEVICE_MEM_DEFAULT; |
|
DevMemRW gDeviceMemRW = DEVICE_MEM_R_W; |
|
int gDevMemTypeValueMap[5] = {0, |
|
CL_MEM_ALLOC_HOST_PTR, |
|
CL_MEM_USE_HOST_PTR, |
|
CL_MEM_COPY_HOST_PTR, |
|
CL_MEM_USE_PERSISTENT_MEM_AMD}; |
|
int gDevMemRWValueMap[3] = {CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY}; |
|
|
|
void finish() |
|
{ |
|
clFinish(getClCommandQueue(Context::getContext())); |
|
} |
|
|
|
bool isCpuDevice() |
|
{ |
|
const DeviceInfo& info = Context::getContext()->getDeviceInfo(); |
|
return (info.deviceType == CVCL_DEVICE_TYPE_CPU); |
|
} |
|
|
|
size_t queryWaveFrontSize(cl_kernel kernel) |
|
{ |
|
const DeviceInfo& info = Context::getContext()->getDeviceInfo(); |
|
if (info.deviceType == CVCL_DEVICE_TYPE_CPU) |
|
return 1; |
|
size_t wavefront = 0; |
|
CV_Assert(kernel != NULL); |
|
openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(Context::getContext()), |
|
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &wavefront, NULL)); |
|
return wavefront; |
|
} |
|
|
|
|
|
void openCLReadBuffer(Context *ctx, cl_mem dst_buffer, void *host_buffer, size_t size) |
|
{ |
|
cl_int status; |
|
status = clEnqueueReadBuffer(getClCommandQueue(ctx), dst_buffer, CL_TRUE, 0, |
|
size, host_buffer, 0, NULL, NULL); |
|
openCLVerifyCall(status); |
|
} |
|
|
|
cl_mem openCLCreateBuffer(Context *ctx, size_t flag , size_t size) |
|
{ |
|
cl_int status; |
|
cl_mem buffer = clCreateBuffer(getClContext(ctx), (cl_mem_flags)flag, size, NULL, &status); |
|
openCLVerifyCall(status); |
|
return buffer; |
|
} |
|
|
|
#define MEMORY_CORRUPTION_GUARD |
|
#ifdef MEMORY_CORRUPTION_GUARD |
|
//#define CHECK_MEMORY_CORRUPTION |
|
#define CHECK_MEMORY_CORRUPTION_PRINT_ERROR |
|
#define CHECK_MEMORY_CORRUPTION_RAISE_ERROR |
|
static const int __memory_corruption_guard_bytes = 64*1024; |
|
#ifdef CHECK_MEMORY_CORRUPTION |
|
static const int __memory_corruption_check_pattern = 0x14326547; // change pattern for sizeof(int)==8 |
|
#endif |
|
struct CheckBuffers |
|
{ |
|
cl_mem mainBuffer; |
|
size_t size; |
|
size_t widthInBytes, height; |
|
CheckBuffers() |
|
: mainBuffer(NULL), size(0), widthInBytes(0), height(0) |
|
{ |
|
// nothing |
|
} |
|
CheckBuffers(cl_mem _mainBuffer, size_t _size, size_t _widthInBytes, size_t _height) |
|
: mainBuffer(_mainBuffer), size(_size), widthInBytes(_widthInBytes), height(_height) |
|
{ |
|
// nothing |
|
} |
|
}; |
|
static std::map<cl_mem, CheckBuffers> __check_buffers; |
|
#endif |
|
|
|
void openCLMallocPitch(Context *ctx, void **dev_ptr, size_t *pitch, |
|
size_t widthInBytes, size_t height) |
|
{ |
|
openCLMallocPitchEx(ctx, dev_ptr, pitch, widthInBytes, height, gDeviceMemRW, gDeviceMemType); |
|
} |
|
|
|
void openCLMallocPitchEx(Context *ctx, void **dev_ptr, size_t *pitch, |
|
size_t widthInBytes, size_t height, DevMemRW rw_type, DevMemType mem_type) |
|
{ |
|
cl_int status; |
|
size_t size = widthInBytes * height; |
|
bool useSubBuffers = |
|
#ifndef MEMORY_CORRUPTION_GUARD |
|
false; |
|
#else |
|
true; |
|
#endif |
|
const DeviceInfo& devInfo = ctx->getDeviceInfo(); |
|
if (useSubBuffers && devInfo.isIntelDevice) |
|
{ |
|
useSubBuffers = false; // TODO FIXIT We observe memory leaks then we working with sub-buffers |
|
// on the CPU device of Intel OpenCL SDK (Linux). We will investigate this later. |
|
} |
|
if (!useSubBuffers) |
|
{ |
|
*dev_ptr = clCreateBuffer(getClContext(ctx), gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type], |
|
size, 0, &status); |
|
openCLVerifyCall(status); |
|
} |
|
#ifdef MEMORY_CORRUPTION_GUARD |
|
else |
|
{ |
|
size_t allocSize = size + __memory_corruption_guard_bytes * 2; |
|
cl_mem mainBuffer = clCreateBuffer(getClContext(ctx), gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type], |
|
allocSize, 0, &status); |
|
openCLVerifyCall(status); |
|
cl_buffer_region r = {__memory_corruption_guard_bytes, size}; |
|
*dev_ptr = clCreateSubBuffer(mainBuffer, |
|
gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type], |
|
CL_BUFFER_CREATE_TYPE_REGION, &r, |
|
&status); |
|
openCLVerifyCall(status); |
|
#ifdef CHECK_MEMORY_CORRUPTION |
|
std::vector<int> tmp(__memory_corruption_guard_bytes / sizeof(int), |
|
__memory_corruption_check_pattern); |
|
CV_Assert(tmp.size() * sizeof(int) == __memory_corruption_guard_bytes); |
|
openCLVerifyCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), |
|
mainBuffer, CL_FALSE, 0, __memory_corruption_guard_bytes, &tmp[0], |
|
0, NULL, NULL)); |
|
openCLVerifyCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), |
|
mainBuffer, CL_FALSE, __memory_corruption_guard_bytes + size, __memory_corruption_guard_bytes, &tmp[0], |
|
0, NULL, NULL)); |
|
clFinish(getClCommandQueue(ctx)); |
|
#endif |
|
CheckBuffers data(mainBuffer, size, widthInBytes, height); |
|
cv::AutoLock lock(getInitializationMutex()); |
|
__check_buffers.insert(std::pair<cl_mem, CheckBuffers>((cl_mem)*dev_ptr, data)); |
|
} |
|
#endif |
|
*pitch = widthInBytes; |
|
} |
|
|
|
void openCLMemcpy2D(Context *ctx, void *dst, size_t dpitch, |
|
const void *src, size_t spitch, |
|
size_t width, size_t height, openCLMemcpyKind kind, int channels) |
|
{ |
|
size_t buffer_origin[3] = {0, 0, 0}; |
|
size_t host_origin[3] = {0, 0, 0}; |
|
size_t region[3] = {width, height, 1}; |
|
if(kind == clMemcpyHostToDevice) |
|
{ |
|
if(dpitch == width || channels == 3 || height == 1) |
|
{ |
|
openCLSafeCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), (cl_mem)dst, CL_TRUE, |
|
0, width * height, src, 0, NULL, NULL)); |
|
} |
|
else |
|
{ |
|
openCLSafeCall(clEnqueueWriteBufferRect(getClCommandQueue(ctx), (cl_mem)dst, CL_TRUE, |
|
buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0)); |
|
} |
|
} |
|
else if(kind == clMemcpyDeviceToHost) |
|
{ |
|
if(spitch == width || channels == 3 || height == 1) |
|
{ |
|
openCLSafeCall(clEnqueueReadBuffer(getClCommandQueue(ctx), (cl_mem)src, CL_TRUE, |
|
0, width * height, dst, 0, NULL, NULL)); |
|
} |
|
else |
|
{ |
|
openCLSafeCall(clEnqueueReadBufferRect(getClCommandQueue(ctx), (cl_mem)src, CL_TRUE, |
|
buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0)); |
|
} |
|
} |
|
} |
|
|
|
void openCLCopyBuffer2D(Context *ctx, void *dst, size_t dpitch, int dst_offset, |
|
const void *src, size_t spitch, |
|
size_t width, size_t height, int src_offset) |
|
{ |
|
size_t src_origin[3] = {src_offset % spitch, src_offset / spitch, 0}; |
|
size_t dst_origin[3] = {dst_offset % dpitch, dst_offset / dpitch, 0}; |
|
size_t region[3] = {width, height, 1}; |
|
|
|
openCLSafeCall(clEnqueueCopyBufferRect(getClCommandQueue(ctx), (cl_mem)src, (cl_mem)dst, src_origin, dst_origin, |
|
region, spitch, 0, dpitch, 0, 0, 0, 0)); |
|
} |
|
|
|
void openCLFree(void *devPtr) |
|
{ |
|
openCLSafeCall(clReleaseMemObject((cl_mem)devPtr)); |
|
#ifdef MEMORY_CORRUPTION_GUARD |
|
#ifdef CHECK_MEMORY_CORRUPTION |
|
bool failBefore = false, failAfter = false; |
|
#endif |
|
CheckBuffers data; |
|
{ |
|
cv::AutoLock lock(getInitializationMutex()); |
|
std::map<cl_mem, CheckBuffers>::iterator i = __check_buffers.find((cl_mem)devPtr); |
|
if (i != __check_buffers.end()) |
|
{ |
|
data = i->second; |
|
__check_buffers.erase(i); |
|
} |
|
} |
|
if (data.mainBuffer != NULL) |
|
{ |
|
#ifdef CHECK_MEMORY_CORRUPTION |
|
Context* ctx = Context::getContext(); |
|
std::vector<uchar> checkBefore(__memory_corruption_guard_bytes); |
|
std::vector<uchar> checkAfter(__memory_corruption_guard_bytes); |
|
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(ctx), |
|
data.mainBuffer, CL_FALSE, 0, __memory_corruption_guard_bytes, &checkBefore[0], |
|
0, NULL, NULL)); |
|
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(ctx), |
|
data.mainBuffer, CL_FALSE, __memory_corruption_guard_bytes + data.size, __memory_corruption_guard_bytes, &checkAfter[0], |
|
0, NULL, NULL)); |
|
clFinish(getClCommandQueue(ctx)); |
|
|
|
std::vector<int> tmp(__memory_corruption_guard_bytes / sizeof(int), |
|
__memory_corruption_check_pattern); |
|
|
|
if (memcmp(&checkBefore[0], &tmp[0], __memory_corruption_guard_bytes) != 0) |
|
{ |
|
failBefore = true; |
|
} |
|
if (memcmp(&checkAfter[0], &tmp[0], __memory_corruption_guard_bytes) != 0) |
|
{ |
|
failAfter = true; |
|
} |
|
#else |
|
// TODO FIXIT Attach clReleaseMemObject call to event completion callback |
|
// TODO 2013/12/04 Disable workaround |
|
// Context* ctx = Context::getContext(); |
|
// clFinish(getClCommandQueue(ctx)); |
|
#endif |
|
openCLSafeCall(clReleaseMemObject(data.mainBuffer)); |
|
} |
|
#if defined(CHECK_MEMORY_CORRUPTION) |
|
if (failBefore) |
|
{ |
|
#ifdef CHECK_MEMORY_CORRUPTION_PRINT_ERROR |
|
std::cerr << "ERROR: Memory corruption detected: before buffer: " << cv::format("widthInBytes=%d height=%d", (int)data.widthInBytes, (int)data.height) << std::endl; |
|
#endif |
|
#ifdef CHECK_MEMORY_CORRUPTION_RAISE_ERROR |
|
CV_Error(CV_StsInternal, "Memory corruption detected: before buffer"); |
|
#endif |
|
} |
|
if (failAfter) |
|
{ |
|
#ifdef CHECK_MEMORY_CORRUPTION_PRINT_ERROR |
|
std::cerr << "ERROR: Memory corruption detected: after buffer: " << cv::format("widthInBytes=%d height=%d", (int)data.widthInBytes, (int)data.height) << std::endl; |
|
#endif |
|
#ifdef CHECK_MEMORY_CORRUPTION_RAISE_ERROR |
|
CV_Error(CV_StsInternal, "Memory corruption detected: after buffer"); |
|
#endif |
|
} |
|
#endif // CHECK_MEMORY_CORRUPTION |
|
#endif // MEMORY_CORRUPTION_GUARD |
|
} |
|
|
|
cl_kernel openCLGetKernelFromSource(const Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName) |
|
{ |
|
return openCLGetKernelFromSource(ctx, source, kernelName, NULL); |
|
} |
|
|
|
cl_kernel openCLGetKernelFromSource(const Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, |
|
const char *build_options) |
|
{ |
|
cl_kernel kernel; |
|
cl_int status = 0; |
|
CV_Assert(ProgramCache::getProgramCache() != NULL); |
|
cl_program program = ProgramCache::getProgramCache()->getProgram(ctx, source, build_options); |
|
CV_Assert(program != NULL); |
|
kernel = clCreateKernel(program, kernelName.c_str(), &status); |
|
openCLVerifyCall(status); |
|
openCLVerifyCall(clReleaseProgram(program)); |
|
return kernel; |
|
} |
|
|
|
void openCLVerifyKernel(const Context *ctx, cl_kernel kernel, size_t *localThreads) |
|
{ |
|
size_t kernelWorkGroupSize; |
|
openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(ctx), |
|
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0)); |
|
CV_Assert( localThreads[0] <= ctx->getDeviceInfo().maxWorkItemSizes[0] ); |
|
CV_Assert( localThreads[1] <= ctx->getDeviceInfo().maxWorkItemSizes[1] ); |
|
CV_Assert( localThreads[2] <= ctx->getDeviceInfo().maxWorkItemSizes[2] ); |
|
CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= kernelWorkGroupSize ); |
|
CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= ctx->getDeviceInfo().maxWorkGroupSize ); |
|
} |
|
|
|
#ifdef PRINT_KERNEL_RUN_TIME |
|
static double total_execute_time = 0; |
|
static double total_kernel_time = 0; |
|
#endif |
|
|
|
static std::string removeDuplicatedWhiteSpaces(const char * buildOptions) |
|
{ |
|
if (buildOptions == NULL) |
|
return ""; |
|
|
|
size_t length = strlen(buildOptions), didx = 0, sidx = 0; |
|
while (sidx < length && buildOptions[sidx] == 0) |
|
++sidx; |
|
|
|
std::string opt; |
|
opt.resize(length); |
|
|
|
for ( ; sidx < length; ++sidx) |
|
if (buildOptions[sidx] != ' ') |
|
opt[didx++] = buildOptions[sidx]; |
|
else if ( !(didx > 0 && opt[didx - 1] == ' ') ) |
|
opt[didx++] = buildOptions[sidx]; |
|
|
|
return opt; |
|
} |
|
|
|
cl_kernel openCLGetKernelFromSource(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, int channels, |
|
int depth, const char *build_options) |
|
{ |
|
//construct kernel name |
|
//The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number |
|
//for example split_C2_D3, represent the split kernel with channels = 2 and dataType Depth = 3(Data type is short) |
|
stringstream idxStr; |
|
if(channels != -1) |
|
idxStr << "_C" << channels; |
|
if(depth != -1) |
|
idxStr << "_D" << depth; |
|
kernelName += idxStr.str(); |
|
|
|
std::string fixedOptions = removeDuplicatedWhiteSpaces(build_options); |
|
cl_kernel kernel = openCLGetKernelFromSource(ctx, source, kernelName, fixedOptions.c_str()); |
|
return kernel; |
|
} |
|
|
|
void openCLExecuteKernel(Context *ctx, cl_kernel kernel, size_t globalThreads[3], |
|
size_t localThreads[3], vector< pair<size_t, const void *> > &args) |
|
{ |
|
if ( localThreads != NULL) |
|
{ |
|
globalThreads[0] = roundUp(globalThreads[0], localThreads[0]); |
|
globalThreads[1] = roundUp(globalThreads[1], localThreads[1]); |
|
globalThreads[2] = roundUp(globalThreads[2], localThreads[2]); |
|
|
|
cv::ocl::openCLVerifyKernel(ctx, kernel, localThreads); |
|
} |
|
for(size_t i = 0; i < args.size(); i ++) |
|
openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second)); |
|
|
|
#ifndef PRINT_KERNEL_RUN_TIME |
|
openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads, |
|
localThreads, 0, NULL, NULL)); |
|
#else |
|
cl_event event = NULL; |
|
openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads, |
|
localThreads, 0, NULL, &event)); |
|
|
|
cl_ulong start_time, end_time, queue_time; |
|
double execute_time = 0; |
|
double total_time = 0; |
|
|
|
openCLSafeCall(clWaitForEvents(1, &event)); |
|
openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, |
|
sizeof(cl_ulong), &start_time, 0)); |
|
|
|
openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, |
|
sizeof(cl_ulong), &end_time, 0)); |
|
|
|
openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_QUEUED, |
|
sizeof(cl_ulong), &queue_time, 0)); |
|
|
|
execute_time = (double)(end_time - start_time) / (1000 * 1000); |
|
total_time = (double)(end_time - queue_time) / (1000 * 1000); |
|
|
|
total_execute_time += execute_time; |
|
total_kernel_time += total_time; |
|
clReleaseEvent(event); |
|
#endif |
|
|
|
clFlush(getClCommandQueue(ctx)); |
|
openCLSafeCall(clReleaseKernel(kernel)); |
|
} |
|
|
|
void openCLExecuteKernel_(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3], |
|
size_t localThreads[3], vector< pair<size_t, const void *> > &args, int channels, |
|
int depth, const char *build_options) |
|
{ |
|
cl_kernel kernel = openCLGetKernelFromSource(ctx, source, kernelName, channels, depth, build_options); |
|
|
|
openCLExecuteKernel(ctx, kernel, globalThreads, localThreads, args); |
|
} |
|
|
|
void openCLExecuteKernel(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, |
|
size_t globalThreads[3], size_t localThreads[3], |
|
vector< pair<size_t, const void *> > &args, int channels, int depth) |
|
{ |
|
openCLExecuteKernel(ctx, source, kernelName, globalThreads, localThreads, args, |
|
channels, depth, NULL); |
|
} |
|
void openCLExecuteKernel(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, |
|
size_t globalThreads[3], size_t localThreads[3], |
|
vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options) |
|
|
|
{ |
|
#ifndef PRINT_KERNEL_RUN_TIME |
|
openCLExecuteKernel_(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth, |
|
build_options); |
|
#else |
|
string data_type[] = { "uchar", "char", "ushort", "short", "int", "float", "double"}; |
|
cout << endl; |
|
cout << "Function Name: " << kernelName; |
|
if(depth >= 0) |
|
cout << " |data type: " << data_type[depth]; |
|
cout << " |channels: " << channels; |
|
cout << " |Time Unit: " << "ms" << endl; |
|
|
|
total_execute_time = 0; |
|
total_kernel_time = 0; |
|
cout << "-------------------------------------" << endl; |
|
|
|
cout << setiosflags(ios::left) << setw(15) << "execute time"; |
|
cout << setiosflags(ios::left) << setw(15) << "launch time"; |
|
cout << setiosflags(ios::left) << setw(15) << "kernel time" << endl; |
|
int i = 0; |
|
for(i = 0; i < RUN_TIMES; i++) |
|
openCLExecuteKernel_(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth, |
|
build_options); |
|
|
|
cout << "average kernel execute time: " << total_execute_time / RUN_TIMES << endl; // "ms" << endl; |
|
cout << "average kernel total time: " << total_kernel_time / RUN_TIMES << endl; // "ms" << endl; |
|
#endif |
|
} |
|
|
|
void openCLExecuteKernelInterop(Context *ctx, const cv::ocl::ProgramSource& source, string kernelName, |
|
size_t globalThreads[3], size_t localThreads[3], |
|
vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options) |
|
|
|
{ |
|
//construct kernel name |
|
//The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number |
|
//for example split_C2_D2, represent the split kernel with channels = 2 and dataType Depth = 2 (Data type is char) |
|
stringstream idxStr; |
|
if(channels != -1) |
|
idxStr << "_C" << channels; |
|
if(depth != -1) |
|
idxStr << "_D" << depth; |
|
kernelName += idxStr.str(); |
|
|
|
std::string name = std::string("custom_") + source.name; |
|
ProgramEntry program = { name.c_str(), source.programStr, source.programHash }; |
|
cl_kernel kernel = openCLGetKernelFromSource(ctx, &program, kernelName, build_options); |
|
|
|
CV_Assert(globalThreads != NULL); |
|
if ( localThreads != NULL) |
|
{ |
|
globalThreads[0] = roundUp(globalThreads[0], localThreads[0]); |
|
globalThreads[1] = roundUp(globalThreads[1], localThreads[1]); |
|
globalThreads[2] = roundUp(globalThreads[2], localThreads[2]); |
|
|
|
cv::ocl::openCLVerifyKernel(ctx, kernel, localThreads); |
|
} |
|
for(size_t i = 0; i < args.size(); i ++) |
|
openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second)); |
|
|
|
openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads, |
|
localThreads, 0, NULL, NULL)); |
|
|
|
clFinish(getClCommandQueue(ctx)); |
|
openCLSafeCall(clReleaseKernel(kernel)); |
|
} |
|
|
|
cl_mem load_constant(cl_context context, cl_command_queue command_queue, const void *value, |
|
const size_t size) |
|
{ |
|
int status; |
|
cl_mem con_struct; |
|
|
|
con_struct = clCreateBuffer(context, CL_MEM_READ_ONLY, size, NULL, &status); |
|
openCLSafeCall(status); |
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(command_queue, con_struct, 1, 0, size, |
|
value, 0, 0, 0)); |
|
|
|
return con_struct; |
|
} |
|
|
|
}//namespace ocl |
|
}//namespace cv
|
|
|