mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1214 lines
46 KiB
1214 lines
46 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Nathan, liujun@multicorewareinc.com |
|
// Peng Xiao, pengxiao@outlook.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <functional> |
|
#include <iterator> |
|
#include <vector> |
|
#include <algorithm> |
|
#include "opencl_kernels.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
using namespace std; |
|
|
|
static const int OPT_SIZE = 100; |
|
|
|
static const char * T_ARR [] = { |
|
"uchar", |
|
"char", |
|
"ushort", |
|
"short", |
|
"int", |
|
"float -D T_FLOAT", |
|
"double"}; |
|
|
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > |
|
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, |
|
const oclMat &trainIdx, const oclMat &distance, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
int m_size = MAX_DESC_LEN; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", |
|
T_ARR[query.depth()], distType, block_size, m_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_UnrollMatch"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > |
|
void matchUnrolledCached(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/, |
|
const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/) |
|
{ |
|
} |
|
|
|
template < int BLOCK_SIZE/*, typename Mask*/ > |
|
void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, |
|
const oclMat &trainIdx, const oclMat &distance, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", |
|
T_ARR[query.depth()], distType, block_size); |
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_Match"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
template < int BLOCK_SIZE/*, typename Mask*/ > |
|
void match(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/, |
|
const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/) |
|
{ |
|
} |
|
|
|
//radius_matchUnrolledCached |
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > |
|
void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/, |
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
int m_size = MAX_DESC_LEN; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", |
|
T_ARR[query.depth()], distType, block_size, m_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&maxDistance )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&nMatches.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_RadiusUnrollMatch"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
//radius_match |
|
template < int BLOCK_SIZE/*, typename Mask*/ > |
|
void radius_match(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/, |
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", |
|
T_ARR[query.depth()], distType, block_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&maxDistance )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&nMatches.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_RadiusMatch"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
static void matchDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask, |
|
const oclMat &trainIdx, const oclMat &distance, int distType) |
|
{ |
|
const oclMat zeroMask; |
|
const oclMat &tempMask = mask.data ? mask : zeroMask; |
|
bool is_cpu = isCpuDevice(); |
|
if (query.cols <= 64) |
|
{ |
|
matchUnrolledCached<16, 64>(query, train, tempMask, trainIdx, distance, distType); |
|
} |
|
else if (query.cols <= 128 && !is_cpu) |
|
{ |
|
matchUnrolledCached<16, 128>(query, train, tempMask, trainIdx, distance, distType); |
|
} |
|
else |
|
{ |
|
match<16>(query, train, tempMask, trainIdx, distance, distType); |
|
} |
|
} |
|
|
|
static void matchDispatcher(const oclMat &query, const oclMat *trains, int n, const oclMat &mask, |
|
const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, int distType) |
|
{ |
|
const oclMat zeroMask; |
|
const oclMat &tempMask = mask.data ? mask : zeroMask; |
|
bool is_cpu = isCpuDevice(); |
|
if (query.cols <= 64) |
|
{ |
|
matchUnrolledCached<16, 64>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType); |
|
} |
|
else if (query.cols <= 128 && !is_cpu) |
|
{ |
|
matchUnrolledCached<16, 128>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType); |
|
} |
|
else |
|
{ |
|
match<16>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType); |
|
} |
|
} |
|
|
|
//radius matchDispatcher |
|
static void matchDispatcher(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask, |
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) |
|
{ |
|
const oclMat zeroMask; |
|
const oclMat &tempMask = mask.data ? mask : zeroMask; |
|
bool is_cpu = isCpuDevice(); |
|
if (query.cols <= 64) |
|
{ |
|
matchUnrolledCached<16, 64>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType); |
|
} |
|
else if (query.cols <= 128 && !is_cpu) |
|
{ |
|
matchUnrolledCached<16, 128>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType); |
|
} |
|
else |
|
{ |
|
radius_match<16>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType); |
|
} |
|
} |
|
|
|
//knn match Dispatcher |
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > |
|
void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, |
|
const oclMat &trainIdx, const oclMat &distance, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
int m_size = MAX_DESC_LEN; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", |
|
T_ARR[query.depth()], distType, block_size, m_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_knnUnrollMatch"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
template < int BLOCK_SIZE/*, typename Mask*/ > |
|
void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, |
|
const oclMat &trainIdx, const oclMat &distance, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", |
|
T_ARR[query.depth()], distType, block_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_knnMatch"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > |
|
void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
int m_size = MAX_DESC_LEN; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", |
|
T_ARR[query.depth()], distType, block_size, m_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&m_size )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_calcDistanceUnrolled"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
template < int BLOCK_SIZE/*, typename Mask*/ > |
|
void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType) |
|
{ |
|
cv::ocl::Context *ctx = query.clCxt; |
|
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; |
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); |
|
int block_size = BLOCK_SIZE; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
char opt [OPT_SIZE] = ""; |
|
sprintf(opt, |
|
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", |
|
T_ARR[query.depth()], distType, block_size); |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); |
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data )); |
|
args.push_back( make_pair( smemSize, (void *)NULL)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
std::string kernelName = "BruteForceMatch_calcDistance"; |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// Calc Distance dispatcher |
|
static void calcDistanceDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask, |
|
const oclMat &allDist, int distType) |
|
{ |
|
if (query.cols <= 64) |
|
{ |
|
calcDistanceUnrolled<16, 64>(query, train, mask, allDist, distType); |
|
} |
|
else if (query.cols <= 128) |
|
{ |
|
calcDistanceUnrolled<16, 128>(query, train, mask, allDist, distType); |
|
} |
|
else |
|
{ |
|
calcDistance<16>(query, train, mask, allDist, distType); |
|
} |
|
} |
|
|
|
static void match2Dispatcher(const oclMat &query, const oclMat &train, const oclMat &mask, |
|
const oclMat &trainIdx, const oclMat &distance, int distType) |
|
{ |
|
bool is_cpu = isCpuDevice(); |
|
if (query.cols <= 64) |
|
{ |
|
knn_matchUnrolledCached<16, 64>(query, train, mask, trainIdx, distance, distType); |
|
} |
|
else if (query.cols <= 128 && !is_cpu) |
|
{ |
|
knn_matchUnrolledCached<16, 128>(query, train, mask, trainIdx, distance, distType); |
|
} |
|
else |
|
{ |
|
knn_match<16>(query, train, mask, trainIdx, distance, distType); |
|
} |
|
} |
|
|
|
template <int BLOCK_SIZE> |
|
void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int /*distType*/) |
|
{ |
|
cv::ocl::Context *ctx = trainIdx.clCxt; |
|
size_t globalSize[] = {trainIdx.rows * BLOCK_SIZE, 1, 1}; |
|
size_t localSize[] = {BLOCK_SIZE, 1, 1}; |
|
int block_size = BLOCK_SIZE; |
|
std::string kernelName = "BruteForceMatch_findBestMatch"; |
|
|
|
for (int i = 0; i < k; ++i) |
|
{ |
|
vector< pair<size_t, const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&i)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size )); |
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); |
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); |
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); |
|
|
|
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1); |
|
} |
|
} |
|
|
|
static void findKnnMatchDispatcher(int k, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType) |
|
{ |
|
findKnnMatch<256>(k, trainIdx, distance, allDist, distType); |
|
} |
|
|
|
static void kmatchDispatcher(const oclMat &query, const oclMat &train, int k, const oclMat &mask, |
|
const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType) |
|
{ |
|
const oclMat zeroMask; |
|
const oclMat &tempMask = mask.data ? mask : zeroMask; |
|
if (k == 2) |
|
{ |
|
match2Dispatcher(query, train, tempMask, trainIdx, distance, distType); |
|
} |
|
else |
|
{ |
|
calcDistanceDispatcher(query, train, tempMask, allDist, distType); |
|
findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType); |
|
} |
|
} |
|
|
|
cv::ocl::BruteForceMatcher_OCL_base::BruteForceMatcher_OCL_base(DistType distType_) : distType(distType_) |
|
{ |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::add(const vector<oclMat> &descCollection) |
|
{ |
|
trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end()); |
|
} |
|
|
|
const vector<oclMat> &cv::ocl::BruteForceMatcher_OCL_base::getTrainDescriptors() const |
|
{ |
|
return trainDescCollection; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::clear() |
|
{ |
|
trainDescCollection.clear(); |
|
} |
|
|
|
bool cv::ocl::BruteForceMatcher_OCL_base::empty() const |
|
{ |
|
return trainDescCollection.empty(); |
|
} |
|
|
|
bool cv::ocl::BruteForceMatcher_OCL_base::isMaskSupported() const |
|
{ |
|
return true; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat &query, const oclMat &train, |
|
oclMat &trainIdx, oclMat &distance, const oclMat &mask) |
|
{ |
|
if (query.empty() || train.empty()) |
|
return; |
|
|
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F); |
|
CV_Assert(train.cols == query.cols && train.type() == query.type()); |
|
|
|
ensureSizeIsEnough(1, query.rows, CV_32S, trainIdx); |
|
ensureSizeIsEnough(1, query.rows, CV_32F, distance); |
|
|
|
matchDispatcher(query, train, mask, trainIdx, distance, distType); |
|
|
|
return; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &distance, vector<DMatch> &matches) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return; |
|
|
|
Mat trainIdxCPU(trainIdx); |
|
Mat distanceCPU(distance); |
|
|
|
matchConvert(trainIdxCPU, distanceCPU, matches); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, const Mat &distance, vector<DMatch> &matches) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return; |
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1); |
|
CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols); |
|
|
|
const int nQuery = trainIdx.cols; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *trainIdx_ptr = trainIdx.ptr<int>(); |
|
const float *distance_ptr = distance.ptr<float>(); |
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIdx = *trainIdx_ptr; |
|
|
|
if (trainIdx == -1) |
|
continue; |
|
|
|
float distance = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIdx, 0, distance); |
|
|
|
matches.push_back(m); |
|
} |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat &query, const oclMat &train, vector<DMatch> &matches, const oclMat &mask) |
|
{ |
|
assert(mask.empty()); // mask is not supported at the moment |
|
oclMat trainIdx, distance; |
|
matchSingle(query, train, trainIdx, distance, mask); |
|
matchDownload(trainIdx, distance, matches); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::makeGpuCollection(oclMat &trainCollection, oclMat &maskCollection, const vector<oclMat> &masks) |
|
{ |
|
|
|
if (empty()) |
|
return; |
|
|
|
if (masks.empty()) |
|
{ |
|
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat))); |
|
|
|
oclMat *trainCollectionCPU_ptr = trainCollectionCPU.ptr<oclMat>(); |
|
|
|
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr) |
|
*trainCollectionCPU_ptr = trainDescCollection[i]; |
|
|
|
trainCollection.upload(trainCollectionCPU); |
|
maskCollection.release(); |
|
} |
|
else |
|
{ |
|
CV_Assert(masks.size() == trainDescCollection.size()); |
|
|
|
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat))); |
|
Mat maskCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat))); |
|
|
|
oclMat *trainCollectionCPU_ptr = trainCollectionCPU.ptr<oclMat>(); |
|
oclMat *maskCollectionCPU_ptr = maskCollectionCPU.ptr<oclMat>(); |
|
|
|
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr, ++maskCollectionCPU_ptr) |
|
{ |
|
const oclMat &train = trainDescCollection[i]; |
|
const oclMat &mask = masks[i]; |
|
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == train.rows)); |
|
|
|
*trainCollectionCPU_ptr = train; |
|
*maskCollectionCPU_ptr = mask; |
|
} |
|
|
|
trainCollection.upload(trainCollectionCPU); |
|
maskCollection.upload(maskCollectionCPU); |
|
} |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, const oclMat &trainCollection, oclMat &trainIdx, |
|
oclMat &imgIdx, oclMat &distance, const oclMat &masks) |
|
{ |
|
if (query.empty() || trainCollection.empty()) |
|
return; |
|
|
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F); |
|
|
|
const int nQuery = query.rows; |
|
|
|
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx); |
|
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx); |
|
ensureSizeIsEnough(1, nQuery, CV_32F, distance); |
|
|
|
matchDispatcher(query, &trainCollection, trainCollection.cols, masks, trainIdx, imgIdx, distance, distType); |
|
|
|
return; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, vector<DMatch> &matches) |
|
{ |
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty()) |
|
return; |
|
|
|
Mat trainIdxCPU(trainIdx); |
|
Mat imgIdxCPU(imgIdx); |
|
Mat distanceCPU(distance); |
|
|
|
matchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, matches); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, vector<DMatch> &matches) |
|
{ |
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty()) |
|
return; |
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1); |
|
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.cols == trainIdx.cols); |
|
CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols); |
|
|
|
const int nQuery = trainIdx.cols; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *trainIdx_ptr = trainIdx.ptr<int>(); |
|
const int *imgIdx_ptr = imgIdx.ptr<int>(); |
|
const float *distance_ptr = distance.ptr<float>(); |
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIdx = *trainIdx_ptr; |
|
|
|
if (trainIdx == -1) |
|
continue; |
|
|
|
int imgIdx = *imgIdx_ptr; |
|
|
|
float distance = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance); |
|
|
|
matches.push_back(m); |
|
} |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat &query, vector<DMatch> &matches, const vector<oclMat> &masks) |
|
{ |
|
oclMat trainCollection; |
|
oclMat maskCollection; |
|
|
|
makeGpuCollection(trainCollection, maskCollection, masks); |
|
|
|
oclMat trainIdx, imgIdx, distance; |
|
|
|
matchCollection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection); |
|
matchDownload(trainIdx, imgIdx, distance, matches); |
|
} |
|
|
|
// knn match |
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat &query, const oclMat &train, oclMat &trainIdx, |
|
oclMat &distance, oclMat &allDist, int k, const oclMat &mask) |
|
{ |
|
if (query.empty() || train.empty()) |
|
return; |
|
|
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F); |
|
CV_Assert(train.type() == query.type() && train.cols == query.cols); |
|
|
|
const int nQuery = query.rows; |
|
const int nTrain = train.rows; |
|
|
|
if (k == 2) |
|
{ |
|
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); |
|
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); |
|
} |
|
else |
|
{ |
|
ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx); |
|
ensureSizeIsEnough(nQuery, k, CV_32F, distance); |
|
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist); |
|
} |
|
|
|
trainIdx.setTo(Scalar::all(-1)); |
|
|
|
kmatchDispatcher(query, train, k, mask, trainIdx, distance, allDist, distType); |
|
|
|
return; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat &trainIdx, const oclMat &distance, vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return; |
|
|
|
Mat trainIdxCPU(trainIdx); |
|
Mat distanceCPU(distance); |
|
|
|
knnMatchConvert(trainIdxCPU, distanceCPU, matches, compactResult); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchConvert(const Mat &trainIdx, const Mat &distance, vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return; |
|
|
|
CV_Assert(trainIdx.type() == CV_32SC2 || trainIdx.type() == CV_32SC1); |
|
CV_Assert(distance.type() == CV_32FC2 || distance.type() == CV_32FC1); |
|
CV_Assert(distance.size() == trainIdx.size()); |
|
CV_Assert(trainIdx.isContinuous() && distance.isContinuous()); |
|
|
|
const int nQuery = trainIdx.type() == CV_32SC2 ? trainIdx.cols : trainIdx.rows; |
|
const int k = trainIdx.type() == CV_32SC2 ? 2 : trainIdx.cols; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *trainIdx_ptr = trainIdx.ptr<int>(); |
|
const float *distance_ptr = distance.ptr<float>(); |
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
|
{ |
|
matches.push_back(vector<DMatch>()); |
|
vector<DMatch> &curMatches = matches.back(); |
|
curMatches.reserve(k); |
|
|
|
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIdx = *trainIdx_ptr; |
|
|
|
if (trainIdx != -1) |
|
{ |
|
float distance = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIdx, 0, distance); |
|
|
|
curMatches.push_back(m); |
|
} |
|
} |
|
|
|
if (compactResult && curMatches.empty()) |
|
matches.pop_back(); |
|
} |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, const oclMat &train, vector< vector<DMatch> > &matches |
|
, int k, const oclMat &mask, bool compactResult) |
|
{ |
|
oclMat trainIdx, distance, allDist; |
|
knnMatchSingle(query, train, trainIdx, distance, allDist, k, mask); |
|
knnMatchDownload(trainIdx, distance, matches, compactResult); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Collection(const oclMat &query, const oclMat &trainCollection, |
|
oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, const oclMat &/*maskCollection*/) |
|
{ |
|
if (query.empty() || trainCollection.empty()) |
|
return; |
|
|
|
// typedef void (*caller_t)(const oclMat & query, const oclMat & trains, const oclMat & masks, |
|
// const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance); |
|
|
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F); |
|
|
|
const int nQuery = query.rows; |
|
|
|
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); |
|
ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx); |
|
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); |
|
|
|
trainIdx.setTo(Scalar::all(-1)); |
|
|
|
//caller_t func = callers[distType][query.depth()]; |
|
//CV_Assert(func != 0); |
|
|
|
//func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Download(const oclMat &trainIdx, const oclMat &imgIdx, |
|
const oclMat &distance, vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty()) |
|
return; |
|
|
|
Mat trainIdxCPU(trainIdx); |
|
Mat imgIdxCPU(imgIdx); |
|
Mat distanceCPU(distance); |
|
|
|
knnMatch2Convert(trainIdxCPU, imgIdxCPU, distanceCPU, matches, compactResult); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Convert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, |
|
vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty()) |
|
return; |
|
|
|
CV_Assert(trainIdx.type() == CV_32SC2); |
|
CV_Assert(imgIdx.type() == CV_32SC2 && imgIdx.cols == trainIdx.cols); |
|
CV_Assert(distance.type() == CV_32FC2 && distance.cols == trainIdx.cols); |
|
|
|
const int nQuery = trainIdx.cols; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *trainIdx_ptr = trainIdx.ptr<int>(); |
|
const int *imgIdx_ptr = imgIdx.ptr<int>(); |
|
const float *distance_ptr = distance.ptr<float>(); |
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
|
{ |
|
matches.push_back(vector<DMatch>()); |
|
vector<DMatch> &curMatches = matches.back(); |
|
curMatches.reserve(2); |
|
|
|
for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIdx = *trainIdx_ptr; |
|
|
|
if (trainIdx != -1) |
|
{ |
|
int imgIdx = *imgIdx_ptr; |
|
|
|
float distance = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance); |
|
|
|
curMatches.push_back(m); |
|
} |
|
} |
|
|
|
if (compactResult && curMatches.empty()) |
|
matches.pop_back(); |
|
} |
|
} |
|
|
|
namespace |
|
{ |
|
struct ImgIdxSetter |
|
{ |
|
explicit inline ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {} |
|
inline void operator()(DMatch &m) const |
|
{ |
|
m.imgIdx = imgIdx; |
|
} |
|
int imgIdx; |
|
}; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, vector< vector<DMatch> > &matches, int k, |
|
const vector<oclMat> &masks, bool compactResult) |
|
{ |
|
if (k == 2) |
|
{ |
|
oclMat trainCollection; |
|
oclMat maskCollection; |
|
|
|
makeGpuCollection(trainCollection, maskCollection, masks); |
|
|
|
oclMat trainIdx, imgIdx, distance; |
|
|
|
knnMatch2Collection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection); |
|
knnMatch2Download(trainIdx, imgIdx, distance, matches); |
|
} |
|
else |
|
{ |
|
if (query.empty() || empty()) |
|
return; |
|
|
|
vector< vector<DMatch> > curMatches; |
|
vector<DMatch> temp; |
|
temp.reserve(2 * k); |
|
|
|
matches.resize(query.rows); |
|
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), k)); |
|
|
|
for (size_t imgIdx = 0, size = trainDescCollection.size(); imgIdx < size; ++imgIdx) |
|
{ |
|
knnMatch(query, trainDescCollection[imgIdx], curMatches, k, masks.empty() ? oclMat() : masks[imgIdx]); |
|
|
|
for (int queryIdx = 0; queryIdx < query.rows; ++queryIdx) |
|
{ |
|
vector<DMatch> &localMatch = curMatches[queryIdx]; |
|
vector<DMatch> &globalMatch = matches[queryIdx]; |
|
|
|
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(static_cast<int>(imgIdx))); |
|
|
|
temp.clear(); |
|
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp)); |
|
|
|
globalMatch.clear(); |
|
const size_t count = std::min((size_t)k, temp.size()); |
|
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch)); |
|
} |
|
} |
|
|
|
if (compactResult) |
|
{ |
|
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&vector<DMatch>::empty)); |
|
matches.erase(new_end, matches.end()); |
|
} |
|
} |
|
} |
|
|
|
// radiusMatchSingle |
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat &query, const oclMat &train, |
|
oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance, const oclMat &mask) |
|
{ |
|
if (query.empty() || train.empty()) |
|
return; |
|
|
|
const int nQuery = query.rows; |
|
const int nTrain = train.rows; |
|
|
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F); |
|
CV_Assert(train.type() == query.type() && train.cols == query.cols); |
|
CV_Assert(trainIdx.empty() || (trainIdx.rows == query.rows && trainIdx.size() == distance.size())); |
|
|
|
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); |
|
if (trainIdx.empty()) |
|
{ |
|
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx); |
|
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance); |
|
} |
|
|
|
nMatches.setTo(Scalar::all(0)); |
|
|
|
matchDispatcher(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType); |
|
|
|
return; |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, |
|
vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty() || nMatches.empty()) |
|
return; |
|
|
|
Mat trainIdxCPU(trainIdx); |
|
Mat distanceCPU(distance); |
|
Mat nMatchesCPU(nMatches); |
|
|
|
radiusMatchConvert(trainIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &nMatches, |
|
vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty() || nMatches.empty()) |
|
return; |
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1); |
|
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); |
|
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows); |
|
|
|
const int nQuery = trainIdx.rows; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *nMatches_ptr = nMatches.ptr<int>(); |
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
|
{ |
|
const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx); |
|
const float *distance_ptr = distance.ptr<float>(queryIdx); |
|
|
|
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); |
|
|
|
if (nMatches == 0) |
|
{ |
|
if (!compactResult) |
|
matches.push_back(vector<DMatch>()); |
|
continue; |
|
} |
|
|
|
matches.push_back(vector<DMatch>(nMatches)); |
|
vector<DMatch> &curMatches = matches.back(); |
|
|
|
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIdx = *trainIdx_ptr; |
|
|
|
float distance = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIdx, 0, distance); |
|
|
|
curMatches[i] = m; |
|
} |
|
|
|
std::sort(curMatches.begin(), curMatches.end()); |
|
} |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat &query, const oclMat &train, vector< vector<DMatch> > &matches, |
|
float maxDistance, const oclMat &mask, bool compactResult) |
|
{ |
|
oclMat trainIdx, distance, nMatches; |
|
radiusMatchSingle(query, train, trainIdx, distance, nMatches, maxDistance, mask); |
|
radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchCollection(const oclMat &query, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, |
|
oclMat &nMatches, float /*maxDistance*/, const vector<oclMat> &masks) |
|
{ |
|
if (query.empty() || empty()) |
|
return; |
|
|
|
#if 0 |
|
typedef void (*caller_t)(const oclMat & query, const oclMat * trains, int n, float maxDistance, const oclMat * masks, |
|
const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance, const oclMat & nMatches); |
|
static const caller_t callers[3][6] = |
|
{ |
|
{ |
|
ocl_matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, |
|
ocl_matchL1_gpu<unsigned short>, matchL1_gpu<short>, |
|
ocl_matchL1_gpu<int>, matchL1_gpu<float> |
|
}, |
|
{ |
|
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, |
|
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, |
|
0/*matchL2_gpu<int>*/, ocl_matchL2_gpu<float> |
|
}, |
|
{ |
|
ocl_matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, |
|
ocl_matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, |
|
ocl_matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ |
|
} |
|
}; |
|
#endif |
|
const int nQuery = query.rows; |
|
|
|
CV_Assert(query.channels() == 1 && query.depth() < CV_64F); |
|
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size())); |
|
|
|
nMatches.create(1, nQuery, CV_32SC1); |
|
if (trainIdx.empty()) |
|
{ |
|
trainIdx.create(nQuery, std::max((nQuery / 100), 10), CV_32SC1); |
|
imgIdx.create(nQuery, std::max((nQuery / 100), 10), CV_32SC1); |
|
distance.create(nQuery, std::max((nQuery / 100), 10), CV_32FC1); |
|
} |
|
|
|
nMatches.setTo(Scalar::all(0)); |
|
|
|
//caller_t func = callers[distType][query.depth()]; |
|
//CV_Assert(func != 0); |
|
|
|
vector<oclMat> trains_(trainDescCollection.begin(), trainDescCollection.end()); |
|
vector<oclMat> masks_(masks.begin(), masks.end()); |
|
|
|
/* func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], |
|
trainIdx, imgIdx, distance, nMatches));*/ |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, |
|
const oclMat &nMatches, vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty()) |
|
return; |
|
|
|
Mat trainIdxCPU(trainIdx); |
|
Mat imgIdxCPU(imgIdx); |
|
Mat distanceCPU(distance); |
|
Mat nMatchesCPU(nMatches); |
|
|
|
radiusMatchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, const Mat &nMatches, |
|
vector< vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty()) |
|
return; |
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1); |
|
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.size() == trainIdx.size()); |
|
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); |
|
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows); |
|
|
|
const int nQuery = trainIdx.rows; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *nMatches_ptr = nMatches.ptr<int>(); |
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
|
{ |
|
const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx); |
|
const int *imgIdx_ptr = imgIdx.ptr<int>(queryIdx); |
|
const float *distance_ptr = distance.ptr<float>(queryIdx); |
|
|
|
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); |
|
|
|
if (nMatches == 0) |
|
{ |
|
if (!compactResult) |
|
matches.push_back(vector<DMatch>()); |
|
continue; |
|
} |
|
|
|
matches.push_back(vector<DMatch>()); |
|
vector<DMatch> &curMatches = matches.back(); |
|
curMatches.reserve(nMatches); |
|
|
|
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIdx = *trainIdx_ptr; |
|
int imgIdx = *imgIdx_ptr; |
|
float distance = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance); |
|
|
|
curMatches.push_back(m); |
|
} |
|
|
|
std::sort(curMatches.begin(), curMatches.end()); |
|
} |
|
} |
|
|
|
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat &query, vector< vector<DMatch> > &matches, float maxDistance, |
|
const vector<oclMat> &masks, bool compactResult) |
|
{ |
|
oclMat trainIdx, imgIdx, distance, nMatches; |
|
radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks); |
|
radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult); |
|
}
|
|
|