mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.6 KiB
164 lines
5.6 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using cv::ml::SVM; |
|
using cv::ml::TrainData; |
|
|
|
static Ptr<TrainData> makeRandomData(int datasize) |
|
{ |
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
|
RNG &rng = cv::theRNG(); |
|
for (int i = 0; i < datasize; ++i) |
|
{ |
|
int response = rng.uniform(0, 2); // Random from {0, 1}. |
|
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f; |
|
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f; |
|
responses.at<int>( i, 0 ) = response; |
|
} |
|
return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
} |
|
|
|
static Ptr<TrainData> makeCircleData(int datasize, float scale_factor, float radius) |
|
{ |
|
// Populate samples with data that can be split into two concentric circles |
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
|
for (int i = 0; i < datasize; i+=2) |
|
{ |
|
const float pi = 3.14159f; |
|
const float angle_rads = (i/datasize) * pi; |
|
const float x = radius * cos(angle_rads); |
|
const float y = radius * cos(angle_rads); |
|
|
|
// Larger circle |
|
samples.at<float>( i, 0 ) = x; |
|
samples.at<float>( i, 1 ) = y; |
|
responses.at<int>( i, 0 ) = 0; |
|
|
|
// Smaller circle |
|
samples.at<float>( i + 1, 0 ) = x * scale_factor; |
|
samples.at<float>( i + 1, 1 ) = y * scale_factor; |
|
responses.at<int>( i + 1, 0 ) = 1; |
|
} |
|
return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
} |
|
|
|
static Ptr<TrainData> makeRandomData2(int datasize) |
|
{ |
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
|
RNG &rng = cv::theRNG(); |
|
for (int i = 0; i < datasize; ++i) |
|
{ |
|
int response = rng.uniform(0, 2); // Random from {0, 1}. |
|
samples.at<float>( i, 0 ) = 0; |
|
samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response; |
|
responses.at<int>( i, 0 ) = response; |
|
} |
|
return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
} |
|
|
|
//================================================================================================== |
|
|
|
TEST(ML_SVM, trainauto) |
|
{ |
|
const int datasize = 100; |
|
cv::Ptr<TrainData> data = makeRandomData(datasize); |
|
ASSERT_TRUE(data); |
|
cv::Ptr<SVM> svm = SVM::create(); |
|
ASSERT_TRUE(svm); |
|
svm->trainAuto( data, 10 ); // 2-fold cross validation. |
|
|
|
float test_data0[2] = {0.25f, 0.25f}; |
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
|
float result0 = svm->predict( test_point0 ); |
|
float test_data1[2] = {0.75f, 0.75f}; |
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
|
float result1 = svm->predict( test_point1 ); |
|
|
|
EXPECT_NEAR(result0, 0, 0.001); |
|
EXPECT_NEAR(result1, 1, 0.001); |
|
} |
|
|
|
TEST(ML_SVM, trainauto_sigmoid) |
|
{ |
|
const int datasize = 100; |
|
const float scale_factor = 0.5; |
|
const float radius = 2.0; |
|
cv::Ptr<TrainData> data = makeCircleData(datasize, scale_factor, radius); |
|
ASSERT_TRUE(data); |
|
|
|
cv::Ptr<SVM> svm = SVM::create(); |
|
ASSERT_TRUE(svm); |
|
svm->setKernel(SVM::SIGMOID); |
|
svm->setGamma(10.0); |
|
svm->setCoef0(-10.0); |
|
svm->trainAuto( data, 10 ); // 2-fold cross validation. |
|
|
|
float test_data0[2] = {radius, radius}; |
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
|
EXPECT_FLOAT_EQ(svm->predict( test_point0 ), 0); |
|
|
|
float test_data1[2] = {scale_factor * radius, scale_factor * radius}; |
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
|
EXPECT_FLOAT_EQ(svm->predict( test_point1 ), 1); |
|
} |
|
|
|
TEST(ML_SVM, trainAuto_regression_5369) |
|
{ |
|
const int datasize = 100; |
|
Ptr<TrainData> data = makeRandomData2(datasize); |
|
cv::Ptr<SVM> svm = SVM::create(); |
|
svm->trainAuto( data, 10 ); // 2-fold cross validation. |
|
|
|
float test_data0[2] = {0.25f, 0.25f}; |
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
|
float result0 = svm->predict( test_point0 ); |
|
float test_data1[2] = {0.75f, 0.75f}; |
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
|
float result1 = svm->predict( test_point1 ); |
|
|
|
EXPECT_EQ(0., result0); |
|
EXPECT_EQ(1., result1); |
|
} |
|
|
|
TEST(ML_SVM, getSupportVectors) |
|
{ |
|
// Set up training data |
|
int labels[4] = {1, -1, -1, -1}; |
|
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} }; |
|
Mat trainingDataMat(4, 2, CV_32FC1, trainingData); |
|
Mat labelsMat(4, 1, CV_32SC1, labels); |
|
|
|
Ptr<SVM> svm = SVM::create(); |
|
ASSERT_TRUE(svm); |
|
svm->setType(SVM::C_SVC); |
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6)); |
|
|
|
// Test retrieval of SVs and compressed SVs on linear SVM |
|
svm->setKernel(SVM::LINEAR); |
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat); |
|
|
|
Mat sv = svm->getSupportVectors(); |
|
EXPECT_EQ(1, sv.rows); // by default compressed SV returned |
|
sv = svm->getUncompressedSupportVectors(); |
|
EXPECT_EQ(3, sv.rows); |
|
|
|
// Test retrieval of SVs and compressed SVs on non-linear SVM |
|
svm->setKernel(SVM::POLY); |
|
svm->setDegree(2); |
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat); |
|
|
|
sv = svm->getSupportVectors(); |
|
EXPECT_EQ(3, sv.rows); |
|
sv = svm->getUncompressedSupportVectors(); |
|
EXPECT_EQ(0, sv.rows); // inapplicable for non-linear SVMs |
|
} |
|
|
|
}} // namespace
|
|
|