mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.2 KiB
156 lines
5.2 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static const int TEST_VALUE_LIMIT = 500; |
|
enum |
|
{ |
|
UNIFORM_SAME_SCALE, |
|
UNIFORM_DIFFERENT_SCALES |
|
}; |
|
|
|
CV_ENUM(SVMSGD_TYPE, UNIFORM_SAME_SCALE, UNIFORM_DIFFERENT_SCALES) |
|
|
|
typedef std::vector< std::pair<float,float> > BorderList; |
|
|
|
static void makeData(RNG &rng, int samplesCount, const Mat &weights, float shift, const BorderList & borders, Mat &samples, Mat & responses) |
|
{ |
|
int featureCount = weights.cols; |
|
samples.create(samplesCount, featureCount, CV_32FC1); |
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second); |
|
responses.create(samplesCount, 1, CV_32FC1); |
|
for (int i = 0 ; i < samplesCount; i++) |
|
{ |
|
double res = samples.row(i).dot(weights) + shift; |
|
responses.at<float>(i) = res > 0 ? 1.f : -1.f; |
|
} |
|
} |
|
|
|
//================================================================================================== |
|
|
|
typedef tuple<SVMSGD_TYPE, int, double> ML_SVMSGD_Param; |
|
typedef testing::TestWithParam<ML_SVMSGD_Param> ML_SVMSGD_Params; |
|
|
|
TEST_P(ML_SVMSGD_Params, scale_and_features) |
|
{ |
|
const int type = get<0>(GetParam()); |
|
const int featureCount = get<1>(GetParam()); |
|
const double precision = get<2>(GetParam()); |
|
|
|
RNG &rng = cv::theRNG(); |
|
|
|
Mat_<float> weights(1, featureCount); |
|
rng.fill(weights, RNG::UNIFORM, -1, 1); |
|
const float shift = static_cast<float>(rng.uniform(-featureCount, featureCount)); |
|
|
|
BorderList borders; |
|
float lowerLimit = -TEST_VALUE_LIMIT; |
|
float upperLimit = TEST_VALUE_LIMIT; |
|
if (type == UNIFORM_SAME_SCALE) |
|
{ |
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit)); |
|
} |
|
else if (type == UNIFORM_DIFFERENT_SCALES) |
|
{ |
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
{ |
|
int crit = rng.uniform(0, 2); |
|
if (crit > 0) |
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit)); |
|
else |
|
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000)); |
|
} |
|
} |
|
ASSERT_FALSE(borders.empty()); |
|
|
|
Mat trainSamples; |
|
Mat trainResponses; |
|
int trainSamplesCount = 10000; |
|
makeData(rng, trainSamplesCount, weights, shift, borders, trainSamples, trainResponses); |
|
ASSERT_EQ(trainResponses.type(), CV_32FC1); |
|
|
|
Mat testSamples; |
|
Mat testResponses; |
|
int testSamplesCount = 100000; |
|
makeData(rng, testSamplesCount, weights, shift, borders, testSamples, testResponses); |
|
ASSERT_EQ(testResponses.type(), CV_32FC1); |
|
|
|
Ptr<TrainData> data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses); |
|
ASSERT_TRUE(data); |
|
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); |
|
ASSERT_TRUE(svmsgd); |
|
|
|
svmsgd->train(data); |
|
|
|
Mat responses; |
|
svmsgd->predict(testSamples, responses); |
|
ASSERT_EQ(responses.type(), CV_32FC1); |
|
ASSERT_EQ(responses.rows, testSamplesCount); |
|
|
|
int errCount = 0; |
|
for (int i = 0; i < testSamplesCount; i++) |
|
if (responses.at<float>(i) * testResponses.at<float>(i) < 0) |
|
errCount++; |
|
float err = (float)errCount / testSamplesCount; |
|
EXPECT_LE(err, precision); |
|
} |
|
|
|
ML_SVMSGD_Param params_list[] = { |
|
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 2, 0.01), |
|
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 5, 0.01), |
|
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 100, 0.02), |
|
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 2, 0.01), |
|
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 5, 0.01), |
|
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 100, 0.01), |
|
}; |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, ML_SVMSGD_Params, testing::ValuesIn(params_list)); |
|
|
|
//================================================================================================== |
|
|
|
TEST(ML_SVMSGD, twoPoints) |
|
{ |
|
Mat samples(2, 2, CV_32FC1); |
|
samples.at<float>(0,0) = 0; |
|
samples.at<float>(0,1) = 0; |
|
samples.at<float>(1,0) = 1000; |
|
samples.at<float>(1,1) = 1; |
|
|
|
Mat responses(2, 1, CV_32FC1); |
|
responses.at<float>(0) = -1; |
|
responses.at<float>(1) = 1; |
|
|
|
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses); |
|
|
|
Mat realWeights(1, 2, CV_32FC1); |
|
realWeights.at<float>(0) = 1000; |
|
realWeights.at<float>(1) = 1; |
|
|
|
float realShift = -500000.5; |
|
|
|
float normRealWeights = static_cast<float>(cv::norm(realWeights)); // TODO cvtest |
|
realWeights /= normRealWeights; |
|
realShift /= normRealWeights; |
|
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); |
|
svmsgd->setOptimalParameters(); |
|
svmsgd->train( trainData ); |
|
|
|
Mat foundWeights = svmsgd->getWeights(); |
|
float foundShift = svmsgd->getShift(); |
|
|
|
float normFoundWeights = static_cast<float>(cv::norm(foundWeights)); // TODO cvtest |
|
foundWeights /= normFoundWeights; |
|
foundShift /= normFoundWeights; |
|
EXPECT_LE(cv::norm(Mat(foundWeights - realWeights)), 0.001); // TODO cvtest |
|
EXPECT_LE(std::abs((foundShift - realShift) / realShift), 0.05); |
|
} |
|
|
|
}} // namespace
|
|
|