Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
890 lines
33 KiB
890 lines
33 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "../precomp.hpp" |
|
|
|
#ifdef HAVE_PROTOBUF |
|
|
|
#include "tf_graph_simplifier.hpp" |
|
|
|
namespace cv { namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
using ::google::protobuf::RepeatedField; |
|
using ::google::protobuf::MapPair; |
|
|
|
class Subgraph // Interface to match and replace TensorFlow subgraphs. |
|
{ |
|
public: |
|
// Add a node to be matched in the origin graph. Specify ids of nodes that |
|
// are expected to be inputs. Returns id of a newly added node. |
|
// TODO: Replace inputs to std::vector<int> in C++11 |
|
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1, |
|
int input_2 = -1, int input_3 = -1) |
|
{ |
|
int nodeInputs[] = {input_0, input_1, input_2, input_3}; |
|
int numInputs = 0; |
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
numInputs += (int)(nodeInputs[i] != -1); |
|
} |
|
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs)); |
|
} |
|
|
|
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_) |
|
{ |
|
for (int i = 0; i < inputs_.size(); ++i) |
|
{ |
|
CV_Assert(inputs_[i] < (int)nodes.size()); |
|
} |
|
nodes.push_back(op); |
|
inputs.push_back(inputs_); |
|
return nodes.size() - 1; |
|
} |
|
|
|
// Specify resulting node. All the matched nodes in subgraph excluding |
|
// input nodes will be fused into this single node. |
|
// TODO: Replace inputs to std::vector<int> in C++11 |
|
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1, |
|
int input_2 = -1, int input_3 = -1, int input_4 = -1, |
|
int input_5 = -1) |
|
{ |
|
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5}; |
|
int numInputs = 0; |
|
for (int i = 0; i < 6; ++i) |
|
{ |
|
CV_Assert(nodeInputs[i] < (int)nodes.size()); |
|
numInputs += (int)(nodeInputs[i] != -1); |
|
} |
|
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs)); |
|
} |
|
|
|
void setFusedNode(const std::string& op, const std::vector<int>& inputs_) |
|
{ |
|
fusedNodeInputs = inputs_; |
|
fusedNodeOp = op; |
|
nodesToFuse.clear(); |
|
for (int i = 0; i < nodes.size(); ++i) |
|
{ |
|
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end() && |
|
nodes[i] != "Const") |
|
nodesToFuse.push_back(i); |
|
} |
|
} |
|
|
|
static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net, |
|
const tensorflow::NodeDef& node, |
|
int inpId) |
|
{ |
|
CV_Assert(inpId < node.input_size()); |
|
std::string name = node.input(inpId); |
|
// If operation produces several tensors, they are specified by index |
|
// after ':' character. In example, "input:0". |
|
name = name.substr(0, name.rfind(':')); |
|
const int numNodes = net.node_size(); |
|
for (int i = 0; i < numNodes; ++i) |
|
{ |
|
if (net.node(i).name() == name) |
|
return net.node(i); |
|
} |
|
CV_Error(Error::StsParseError, "Input node with name " + name + " not found"); |
|
} |
|
|
|
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused. |
|
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused. |
|
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds) |
|
{ |
|
matchedNodesIds.clear(); |
|
matchedNodesIds.reserve(nodesToFuse.size()); |
|
|
|
int numNodes = net.node_size(); |
|
for (int i = 0; i < nodesToFuse.size(); ++i) |
|
{ |
|
while (nodeId < numNodes && net.node(nodeId).op() == "Const") |
|
{ |
|
nodeId += 1; |
|
} |
|
if (nodeId > numNodes - 1) |
|
return false; |
|
|
|
const tensorflow::NodeDef& node = net.node(nodeId); |
|
|
|
if (node.op() != nodes[nodesToFuse[i]]) |
|
return false; |
|
|
|
std::vector<int>& inputNodes = inputs[nodesToFuse[i]]; |
|
if (inputNodes.size() != node.input_size()) |
|
return false; |
|
for (int j = 0; j < inputNodes.size(); ++j) |
|
{ |
|
if (nodes[inputNodes[j]].empty()) // Unknown input node type. |
|
continue; |
|
const tensorflow::NodeDef& inpNode = getInputNode(net, node, j); |
|
if (inpNode.op() != nodes[inputNodes[j]]) |
|
return false; |
|
} |
|
|
|
matchedNodesIds.push_back(nodeId); |
|
nodeId += 1; |
|
} |
|
return true; |
|
} |
|
|
|
// Fuse matched subgraph. |
|
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds) |
|
{ |
|
// Extract names of input nodes. |
|
std::vector<std::string> inputsNames(fusedNodeInputs.size()); |
|
for (int i = 0; i < fusedNodeInputs.size(); ++i) |
|
{ |
|
std::string inpName; |
|
// Find input node name looking at inputs of fused nodes. |
|
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j) |
|
{ |
|
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]); |
|
std::vector<int>& inpIndices = inputs[nodesToFuse[j]]; |
|
|
|
CV_Assert(node.input_size() == inpIndices.size()); |
|
for (int k = 0; k < inpIndices.size(); ++k) |
|
{ |
|
if (inpIndices[k] == fusedNodeInputs[i]) |
|
{ |
|
inpName = node.input(k); |
|
break; |
|
} |
|
} |
|
} |
|
CV_Assert(!inpName.empty()); |
|
inputsNames[i] = inpName; |
|
} |
|
|
|
// Remove matched nodes except the last one. Indices in ascending order are expected. |
|
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back()); |
|
for (int i = matchedNodesIds.size() - 2; i >= 0; --i) |
|
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1); |
|
|
|
// Modify the last node to be a fused one. |
|
node->set_op(fusedNodeOp); |
|
node->clear_input(); |
|
for (int i = 0; i < inputsNames.size(); ++i) |
|
{ |
|
node->add_input(inputsNames[i]); |
|
} |
|
|
|
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size()); |
|
for (int i = 0; i < inputsNames.size(); ++i) |
|
{ |
|
inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i); |
|
} |
|
finalize(net, node, inputNodes); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*, |
|
std::vector<tensorflow::NodeDef*>&) {} |
|
|
|
private: |
|
std::vector<std::string> nodes; // Nodes to be matched in the origin graph. |
|
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs. |
|
|
|
std::string fusedNodeOp; // Operation name of resulting fused node. |
|
std::vector<int> nodesToFuse; // Set of nodes to be fused. |
|
std::vector<int> fusedNodeInputs; // Inputs of fused node. |
|
}; |
|
|
|
class BatchNormSubgraph : public Subgraph |
|
{ |
|
public: |
|
BatchNormSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int epsilon = addNodeToMatch("Const"); |
|
int moving_variance = addNodeToMatch("Const"); |
|
int moving_mean = addNodeToMatch("Const"); |
|
int beta = addNodeToMatch("Const"); |
|
int gamma = addNodeToMatch("Const"); |
|
int add = addNodeToMatch("Add", moving_variance, epsilon); |
|
int rsqrt = addNodeToMatch("Rsqrt", add); |
|
int mul = addNodeToMatch("Mul", rsqrt, gamma); |
|
int mul_1 = addNodeToMatch("Mul", input, mul); |
|
int mul_2 = addNodeToMatch("Mul", moving_mean, mul); |
|
int sub = addNodeToMatch("Sub", beta, mul_2); |
|
addNodeToMatch("Add", mul_1, sub); |
|
|
|
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); |
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); |
|
|
|
fusedNode->mutable_input()->RemoveLast(); |
|
fusedNode->clear_attr(); |
|
tensorflow::AttrValue epsilon; |
|
epsilon.set_f(epsMat.at<float>(0)); |
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon)); |
|
} |
|
}; |
|
|
|
class BatchNormNoGammaSubgraph : public Subgraph |
|
{ |
|
public: |
|
BatchNormNoGammaSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int epsilon = addNodeToMatch("Const"); |
|
int moving_variance = addNodeToMatch("Const"); |
|
int moving_mean = addNodeToMatch("Const"); |
|
int beta = addNodeToMatch("Const"); |
|
int add = addNodeToMatch("Add", moving_variance, epsilon); |
|
int rsqrt = addNodeToMatch("Rsqrt", add); |
|
int mul = addNodeToMatch("Mul", input, rsqrt); |
|
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt); |
|
int sub = addNodeToMatch("Sub", beta, mul_1); |
|
addNodeToMatch("Add", mul, sub); |
|
|
|
// There is a fake reference to beta that will be replaced to a new gamma tensor. |
|
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); |
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); |
|
|
|
fusedNode->mutable_input()->RemoveLast(); |
|
fusedNode->clear_attr(); |
|
tensorflow::AttrValue epsilon; |
|
epsilon.set_f(epsMat.at<float>(0)); |
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon)); |
|
|
|
tensorflow::NodeDef* gamma = net.add_node(); |
|
gamma->set_op("Const"); |
|
gamma->set_name(fusedNode->name() + "/gamma"); |
|
// Just put a single value to recognize this node as Const. |
|
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon)); |
|
fusedNode->set_input(1, gamma->name()); |
|
} |
|
}; |
|
|
|
// tf.contrib.layers.flatten |
|
class FlattenSubgraph : public Subgraph |
|
{ |
|
public: |
|
FlattenSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Const"); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int shape_pack = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", strided_slice, shape_pack); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
setFusedNode("Flatten", input); |
|
} |
|
}; |
|
|
|
// tf.contrib.layers.flatten in case of unknown batch size |
|
class FlattenShapeSubgraph : public Subgraph |
|
{ |
|
public: |
|
FlattenShapeSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int shape_pack = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", strided_slice, shape_pack); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
setFusedNode("Flatten", input); |
|
} |
|
}; |
|
|
|
// K.layers.Softmax |
|
class SoftMaxKerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
SoftMaxKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int maxReductionIndices = addNodeToMatch("Const"); |
|
int smMax = addNodeToMatch("Max", input, maxReductionIndices); |
|
int smSub = addNodeToMatch("Sub", input, smMax); |
|
int smExp = addNodeToMatch("Exp", smSub); |
|
int sumReductionIndices = addNodeToMatch("Const"); |
|
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices); |
|
addNodeToMatch("RealDiv", smExp, smSum); |
|
|
|
setFusedNode("Softmax", input); |
|
} |
|
}; |
|
|
|
class ReLU6KerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
ReLU6KerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int relu = addNodeToMatch("Relu", input); |
|
int maxValue = addNodeToMatch("Const"); |
|
int clipValue = addNodeToMatch("Const"); |
|
int minimum = addNodeToMatch("Minimum", relu, maxValue); |
|
addNodeToMatch("Maximum", minimum, clipValue); |
|
|
|
setFusedNode("Relu6", input); |
|
} |
|
|
|
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds) CV_OVERRIDE |
|
{ |
|
if (!Subgraph::match(net, nodeId, matchedNodesIds)) |
|
return false; |
|
Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor()); |
|
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6; |
|
} |
|
}; |
|
|
|
// Keras' reshape stores output shape in separate Const nodes by one value. |
|
// Need to merge them into a single Const node. |
|
class ReshapeKerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims) |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
std::vector<int> ids(1 + numOutDims); |
|
ids[0] = strided_slice; |
|
for (int i = 0; i < numOutDims; ++i) |
|
ids[1 + i] = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", ids); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
ids[0] = input; |
|
setFusedNode("Reshape", ids); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit. |
|
shape[0] = -1; |
|
for (int i = 0; i < numOutDims; ++i) |
|
{ |
|
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0); |
|
} |
|
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); |
|
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1); |
|
|
|
shapeTensor->clear_int_val(); |
|
for (int i = 0; i < shape.size(); ++i) |
|
{ |
|
shapeTensor->add_int_val(shape[i]); |
|
} |
|
} |
|
|
|
private: |
|
int numOutDims; |
|
}; |
|
|
|
class L2NormalizeSubgraph : public Subgraph |
|
{ |
|
public: |
|
L2NormalizeSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int square = addNodeToMatch("Square", input); |
|
int reductionIndices = addNodeToMatch("Const"); |
|
int sum = addNodeToMatch("Sum", square, reductionIndices); |
|
int y = addNodeToMatch("Const"); |
|
int maximum = addNodeToMatch("Maximum", sum, y); |
|
int rsqrt = addNodeToMatch("Rsqrt", maximum); |
|
addNodeToMatch("Mul", input, rsqrt); |
|
setFusedNode("L2Normalize", input, reductionIndices); |
|
} |
|
}; |
|
|
|
class DeconvolutionValidKerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
DeconvolutionValidKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int kernel = addNodeToMatch("Const"); |
|
|
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const")); |
|
int add = addNodeToMatch("Add", mul, addNodeToMatch("Const")); |
|
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const")); |
|
int add_1 = addNodeToMatch("Add", mul_1, addNodeToMatch("Const")); |
|
int pack = addNodeToMatch("Pack", strided_slice, add, add_1, addNodeToMatch("Const")); |
|
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input); |
|
// Put any unused Const op to the first input. |
|
setFusedNode("Conv2DBackpropInput", stack, kernel, input); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp) |
|
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX; |
|
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY; |
|
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW). |
|
std::string padMode = fusedNode->attr().at("padding").s(); |
|
CV_Assert(padMode == "VALID"); |
|
|
|
const tensorflow::TensorShapeProto& kernelShape = |
|
inputNodes[1]->mutable_attr()->at("value").tensor().tensor_shape(); |
|
|
|
CV_Assert(kernelShape.dim_size() == 4); |
|
const int kernelHeight = kernelShape.dim(0).size(); |
|
const int kernelWidth = kernelShape.dim(1).size(); |
|
|
|
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor(); |
|
outShape->clear_int_val(); |
|
outShape->add_int_val(-1); |
|
outShape->add_int_val(kernelHeight); |
|
outShape->add_int_val(kernelWidth); |
|
outShape->add_int_val(-1); |
|
} |
|
}; |
|
|
|
class DeconvolutionSameKerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
DeconvolutionSameKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int kernel = addNodeToMatch("Const"); |
|
|
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const")); |
|
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const")); |
|
int pack = addNodeToMatch("Pack", strided_slice, mul, mul_1, addNodeToMatch("Const")); |
|
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input); |
|
// Put any unused Const op to the first input. |
|
setFusedNode("Conv2DBackpropInput", stack, kernel, input); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp) |
|
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX; |
|
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY; |
|
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW). |
|
std::string padMode = fusedNode->attr().at("padding").s(); |
|
CV_Assert(padMode == "SAME"); |
|
|
|
const tensorflow::AttrValue_ListValue& strides = fusedNode->attr().at("strides").list(); |
|
CV_Assert(strides.i_size() == 4); |
|
|
|
const int strideY = strides.i(1); |
|
const int strideX = strides.i(2); |
|
|
|
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor(); |
|
outShape->clear_int_val(); |
|
outShape->add_int_val(-1); |
|
outShape->add_int_val(strideY); |
|
outShape->add_int_val(strideX); |
|
outShape->add_int_val(-1); |
|
} |
|
}; |
|
|
|
// In case of resizing by factor. |
|
class ResizeBilinearSubgraph : public Subgraph |
|
{ |
|
public: |
|
ResizeBilinearSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
|
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factorY = addNodeToMatch("Const"); |
|
int mul = addNodeToMatch("Mul", strided_slice, factorY); |
|
|
|
shape = addNodeToMatch("Shape", input); |
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factorX = addNodeToMatch("Const"); |
|
int mul_1 = addNodeToMatch("Mul", strided_slice, factorX); |
|
|
|
int pack = addNodeToMatch("Pack", mul, mul_1); |
|
|
|
addNodeToMatch("ResizeBilinear", input, pack); |
|
setFusedNode("ResizeBilinear", input, factorY, factorX); |
|
} |
|
}; |
|
|
|
// In case of resizing by factor. |
|
class UpsamplingKerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
UpsamplingKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factors = addNodeToMatch("Const"); |
|
int mul = addNodeToMatch("Mul", strided_slice, factors); |
|
addNodeToMatch("ResizeNearestNeighbor", input, mul); |
|
setFusedNode("ResizeNearestNeighbor", input, factors); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor()); |
|
CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, ""); |
|
|
|
// Height scale factor |
|
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); |
|
factorY->clear_int_val(); |
|
factorY->clear_tensor_content(); |
|
factorY->add_int_val(factorsMat.at<int>(0, 0)); |
|
|
|
// Width scale factor. |
|
tensorflow::NodeDef* factorXNode = net.add_node(); |
|
factorXNode->set_op("Const"); |
|
factorXNode->set_name(fusedNode->name() + "/factor_y"); |
|
|
|
tensorflow::AttrValue factorX; |
|
factorX.mutable_tensor()->set_dtype(tensorflow::DT_INT32); |
|
factorX.mutable_tensor()->add_int_val(factorsMat.at<int>(0, 1)); |
|
factorXNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", factorX)); |
|
|
|
fusedNode->add_input(factorXNode->name()); |
|
} |
|
}; |
|
|
|
class ReshapeAsShapeSubgraph : public Subgraph |
|
{ |
|
public: |
|
ReshapeAsShapeSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shapeSrc = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", shapeSrc); |
|
addNodeToMatch("Reshape", input, shape); |
|
setFusedNode("Reshape", input, shapeSrc); |
|
} |
|
}; |
|
|
|
void simplifySubgraphs(tensorflow::GraphDef& net) |
|
{ |
|
std::vector<Ptr<Subgraph> > subgraphs; |
|
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3))); |
|
subgraphs.push_back(Ptr<Subgraph>(new L2NormalizeSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionValidKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph())); |
|
|
|
int numNodes = net.node_size(); |
|
std::vector<int> matchedNodesIds; |
|
for (int i = 0; i < numNodes; ++i) |
|
{ |
|
for (int j = 0; j < subgraphs.size(); ++j) |
|
{ |
|
if (subgraphs[j]->match(net, i, matchedNodesIds)) |
|
{ |
|
subgraphs[j]->replace(net, matchedNodesIds); |
|
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added. |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void RemoveIdentityOps(tensorflow::GraphDef& net) |
|
{ |
|
typedef std::map<String, String> IdentityOpsMap; |
|
IdentityOpsMap identity_ops; |
|
|
|
std::vector<int> identity_ops_idx; |
|
|
|
int layersCount = net.node_size(); |
|
for (int li = 0; li < layersCount; li++) |
|
{ |
|
const tensorflow::NodeDef &layer = net.node(li); |
|
String type = layer.op(); |
|
|
|
if (type == "Identity" || type == "Dropout") { |
|
identity_ops_idx.push_back(li); |
|
identity_ops[layer.name()] = layer.input(0); |
|
} |
|
} |
|
|
|
for (int li = 0; li < layersCount; li++) |
|
{ |
|
tensorflow::NodeDef* layer = net.mutable_node(li); |
|
for (int input_id = 0; input_id < layer->input_size(); input_id++) { |
|
String input_op_name = layer->input(input_id); |
|
IdentityOpsMap::iterator it = identity_ops.find(input_op_name); |
|
|
|
if (it != identity_ops.end()) { |
|
layer->set_input(input_id, it->second); |
|
} |
|
} |
|
} |
|
|
|
std::sort(identity_ops_idx.begin(), identity_ops_idx.end()); |
|
|
|
int removed_nodes = 0; |
|
for(size_t i = 0; i < identity_ops_idx.size(); i++) { |
|
int start_id = identity_ops_idx[i] - removed_nodes; |
|
net.mutable_node()->DeleteSubrange(start_id, 1); |
|
removed_nodes++; |
|
} |
|
} |
|
|
|
Mat getTensorContent(const tensorflow::TensorProto &tensor) |
|
{ |
|
const std::string& content = tensor.tensor_content(); |
|
switch (tensor.dtype()) |
|
{ |
|
case tensorflow::DT_FLOAT: |
|
{ |
|
if (!content.empty()) |
|
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone(); |
|
else |
|
{ |
|
const RepeatedField<float>& field = tensor.float_val(); |
|
CV_Assert(!field.empty()); |
|
return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone(); |
|
} |
|
} |
|
case tensorflow::DT_DOUBLE: |
|
{ |
|
if (!content.empty()) |
|
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone(); |
|
else |
|
{ |
|
const RepeatedField<double>& field = tensor.double_val(); |
|
CV_Assert(!field.empty()); |
|
return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone(); |
|
} |
|
} |
|
case tensorflow::DT_INT32: |
|
{ |
|
if (!content.empty()) |
|
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone(); |
|
else |
|
{ |
|
const RepeatedField<int32_t>& field = tensor.int_val(); |
|
CV_Assert(!field.empty()); |
|
return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone(); |
|
} |
|
} |
|
case tensorflow::DT_HALF: |
|
{ |
|
Mat halfs; |
|
if (!content.empty()) |
|
{ |
|
static const int kHalfSize = 2; |
|
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str()); |
|
} |
|
else |
|
{ |
|
const RepeatedField<int32_t>& field = tensor.half_val(); |
|
CV_Assert(!field.empty()); |
|
Mat ints(1, field.size(), CV_32SC1, (void*)field.data()); |
|
ints.convertTo(halfs, CV_16UC1); |
|
} |
|
// Reinterpret as a signed shorts just for a convertFp16 call. |
|
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data); |
|
Mat floats(halfs.size(), CV_32FC1); |
|
convertFp16(halfsSigned, floats); |
|
return floats; |
|
} |
|
case tensorflow::DT_QUINT8: |
|
{ |
|
CV_Assert(!content.empty()); |
|
return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone(); |
|
} |
|
default: |
|
CV_Error(Error::StsError, "Tensor's data type is not supported"); |
|
break; |
|
} |
|
return Mat(); |
|
} |
|
|
|
void releaseTensor(tensorflow::TensorProto* tensor) |
|
{ |
|
if (!tensor->mutable_tensor_content()->empty()) |
|
{ |
|
delete tensor->release_tensor_content(); |
|
} |
|
} |
|
|
|
static void permute(google::protobuf::RepeatedPtrField<tensorflow::NodeDef>* data, |
|
const std::vector<int>& indices) |
|
{ |
|
const int num = data->size(); |
|
CV_Assert(num == indices.size()); |
|
|
|
std::vector<int> elemIdToPos(num); |
|
std::vector<int> posToElemId(num); |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
elemIdToPos[i] = i; |
|
posToElemId[i] = i; |
|
} |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
int elemId = indices[i]; |
|
int pos = elemIdToPos[elemId]; |
|
if (pos != i) |
|
{ |
|
data->SwapElements(i, pos); |
|
const int swappedElemId = posToElemId[i]; |
|
elemIdToPos[elemId] = i; |
|
elemIdToPos[swappedElemId] = pos; |
|
|
|
posToElemId[i] = elemId; |
|
posToElemId[pos] = swappedElemId; |
|
} |
|
} |
|
} |
|
|
|
// Is based on tensorflow::graph_transforms::SortByExecutionOrder |
|
void sortByExecutionOrder(tensorflow::GraphDef& net) |
|
{ |
|
// Maps node's name to index at net.node() list. |
|
std::map<std::string, int> nodesMap; |
|
std::map<std::string, int>::iterator nodesMapIt; |
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(i); |
|
nodesMap.insert(std::make_pair(node.name(), i)); |
|
} |
|
|
|
// Indices of nodes which use specific node as input. |
|
std::vector<std::vector<int> > edges(nodesMap.size()); |
|
std::vector<int> numRefsToAdd(nodesMap.size(), 0); |
|
std::vector<int> nodesToAdd; |
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(i); |
|
for (int j = 0; j < node.input_size(); ++j) |
|
{ |
|
std::string inpName = node.input(j); |
|
inpName = inpName.substr(0, inpName.rfind(':')); |
|
inpName = inpName.substr(inpName.find('^') + 1); |
|
|
|
nodesMapIt = nodesMap.find(inpName); |
|
CV_Assert(nodesMapIt != nodesMap.end()); |
|
edges[nodesMapIt->second].push_back(i); |
|
} |
|
if (node.input_size() == 0) |
|
nodesToAdd.push_back(i); |
|
else |
|
{ |
|
if (node.op() == "Merge" || node.op() == "RefMerge") |
|
{ |
|
int numControlEdges = 0; |
|
for (int j = 0; j < node.input_size(); ++j) |
|
numControlEdges += node.input(j)[0] == '^'; |
|
numRefsToAdd[i] = numControlEdges + 1; |
|
} |
|
else |
|
numRefsToAdd[i] = node.input_size(); |
|
} |
|
} |
|
|
|
std::vector<int> permIds; |
|
permIds.reserve(net.node_size()); |
|
while (!nodesToAdd.empty()) |
|
{ |
|
int nodeToAdd = nodesToAdd.back(); |
|
nodesToAdd.pop_back(); |
|
|
|
permIds.push_back(nodeToAdd); |
|
// std::cout << net.node(nodeToAdd).name() << '\n'; |
|
|
|
for (int i = 0; i < edges[nodeToAdd].size(); ++i) |
|
{ |
|
int consumerId = edges[nodeToAdd][i]; |
|
if (numRefsToAdd[consumerId] > 0) |
|
{ |
|
if (numRefsToAdd[consumerId] == 1) |
|
nodesToAdd.push_back(consumerId); |
|
else |
|
CV_Assert(numRefsToAdd[consumerId] >= 0); |
|
numRefsToAdd[consumerId] -= 1; |
|
} |
|
} |
|
} |
|
CV_Assert(permIds.size() == net.node_size()); |
|
permute(net.mutable_node(), permIds); |
|
} |
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace dnn, namespace cv |
|
|
|
#endif // HAVE_PROTOBUF
|
|
|