Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

890 lines
33 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include "tf_graph_simplifier.hpp"
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
using ::google::protobuf::RepeatedField;
using ::google::protobuf::MapPair;
class Subgraph // Interface to match and replace TensorFlow subgraphs.
{
public:
// Add a node to be matched in the origin graph. Specify ids of nodes that
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3};
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
}
// Specify resulting node. All the matched nodes in subgraph excluding
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
void setFusedNode(const std::string& op, const std::vector<int>& inputs_)
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
nodesToFuse.clear();
for (int i = 0; i < nodes.size(); ++i)
{
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end() &&
nodes[i] != "Const")
nodesToFuse.push_back(i);
}
}
static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net,
const tensorflow::NodeDef& node,
int inpId)
{
CV_Assert(inpId < node.input_size());
std::string name = node.input(inpId);
// If operation produces several tensors, they are specified by index
// after ':' character. In example, "input:0".
name = name.substr(0, name.rfind(':'));
const int numNodes = net.node_size();
for (int i = 0; i < numNodes; ++i)
{
if (net.node(i).name() == name)
return net.node(i);
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
}
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds)
{
matchedNodesIds.clear();
matchedNodesIds.reserve(nodesToFuse.size());
int numNodes = net.node_size();
for (int i = 0; i < nodesToFuse.size(); ++i)
{
while (nodeId < numNodes && net.node(nodeId).op() == "Const")
{
nodeId += 1;
}
if (nodeId > numNodes - 1)
return false;
const tensorflow::NodeDef& node = net.node(nodeId);
if (node.op() != nodes[nodesToFuse[i]])
return false;
std::vector<int>& inputNodes = inputs[nodesToFuse[i]];
if (inputNodes.size() != node.input_size())
return false;
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
const tensorflow::NodeDef& inpNode = getInputNode(net, node, j);
if (inpNode.op() != nodes[inputNodes[j]])
return false;
}
matchedNodesIds.push_back(nodeId);
nodeId += 1;
}
return true;
}
// Fuse matched subgraph.
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds)
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[nodesToFuse[j]];
CV_Assert(node.input_size() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node.input(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
// Modify the last node to be a fused one.
node->set_op(fusedNodeOp);
node->clear_input();
for (int i = 0; i < inputsNames.size(); ++i)
{
node->add_input(inputsNames[i]);
}
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i);
}
finalize(net, node, inputNodes);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*,
std::vector<tensorflow::NodeDef*>&) {}
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> nodesToFuse; // Set of nodes to be fused.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
};
class BatchNormSubgraph : public Subgraph
{
public:
BatchNormSubgraph()
{
int input = addNodeToMatch("");
int epsilon = addNodeToMatch("Const");
int moving_variance = addNodeToMatch("Const");
int moving_mean = addNodeToMatch("Const");
int beta = addNodeToMatch("Const");
int gamma = addNodeToMatch("Const");
int add = addNodeToMatch("Add", moving_variance, epsilon);
int rsqrt = addNodeToMatch("Rsqrt", add);
int mul = addNodeToMatch("Mul", rsqrt, gamma);
int mul_1 = addNodeToMatch("Mul", input, mul);
int mul_2 = addNodeToMatch("Mul", moving_mean, mul);
int sub = addNodeToMatch("Sub", beta, mul_2);
addNodeToMatch("Add", mul_1, sub);
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr();
tensorflow::AttrValue epsilon;
epsilon.set_f(epsMat.at<float>(0));
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
}
};
class BatchNormNoGammaSubgraph : public Subgraph
{
public:
BatchNormNoGammaSubgraph()
{
int input = addNodeToMatch("");
int epsilon = addNodeToMatch("Const");
int moving_variance = addNodeToMatch("Const");
int moving_mean = addNodeToMatch("Const");
int beta = addNodeToMatch("Const");
int add = addNodeToMatch("Add", moving_variance, epsilon);
int rsqrt = addNodeToMatch("Rsqrt", add);
int mul = addNodeToMatch("Mul", input, rsqrt);
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt);
int sub = addNodeToMatch("Sub", beta, mul_1);
addNodeToMatch("Add", mul, sub);
// There is a fake reference to beta that will be replaced to a new gamma tensor.
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon);
}
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr();
tensorflow::AttrValue epsilon;
epsilon.set_f(epsMat.at<float>(0));
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
tensorflow::NodeDef* gamma = net.add_node();
gamma->set_op("Const");
gamma->set_name(fusedNode->name() + "/gamma");
// Just put a single value to recognize this node as Const.
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon));
fusedNode->set_input(1, gamma->name());
}
};
// tf.contrib.layers.flatten
class FlattenSubgraph : public Subgraph
{
public:
FlattenSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int shape_pack = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
addNodeToMatch("Reshape", input, pack);
setFusedNode("Flatten", input);
}
};
// tf.contrib.layers.flatten in case of unknown batch size
class FlattenShapeSubgraph : public Subgraph
{
public:
FlattenShapeSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int shape_pack = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
addNodeToMatch("Reshape", input, pack);
setFusedNode("Flatten", input);
}
};
// K.layers.Softmax
class SoftMaxKerasSubgraph : public Subgraph
{
public:
SoftMaxKerasSubgraph()
{
int input = addNodeToMatch("");
int maxReductionIndices = addNodeToMatch("Const");
int smMax = addNodeToMatch("Max", input, maxReductionIndices);
int smSub = addNodeToMatch("Sub", input, smMax);
int smExp = addNodeToMatch("Exp", smSub);
int sumReductionIndices = addNodeToMatch("Const");
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices);
addNodeToMatch("RealDiv", smExp, smSum);
setFusedNode("Softmax", input);
}
};
class ReLU6KerasSubgraph : public Subgraph
{
public:
ReLU6KerasSubgraph()
{
int input = addNodeToMatch("");
int relu = addNodeToMatch("Relu", input);
int maxValue = addNodeToMatch("Const");
int clipValue = addNodeToMatch("Const");
int minimum = addNodeToMatch("Minimum", relu, maxValue);
addNodeToMatch("Maximum", minimum, clipValue);
setFusedNode("Relu6", input);
}
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds) CV_OVERRIDE
{
if (!Subgraph::match(net, nodeId, matchedNodesIds))
return false;
Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor());
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
}
};
// Keras' reshape stores output shape in separate Const nodes by one value.
// Need to merge them into a single Const node.
class ReshapeKerasSubgraph : public Subgraph
{
public:
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
std::vector<int> ids(1 + numOutDims);
ids[0] = strided_slice;
for (int i = 0; i < numOutDims; ++i)
ids[1 + i] = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", ids);
addNodeToMatch("Reshape", input, pack);
ids[0] = input;
setFusedNode("Reshape", ids);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit.
shape[0] = -1;
for (int i = 0; i < numOutDims; ++i)
{
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0);
}
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1);
shapeTensor->clear_int_val();
for (int i = 0; i < shape.size(); ++i)
{
shapeTensor->add_int_val(shape[i]);
}
}
private:
int numOutDims;
};
class L2NormalizeSubgraph : public Subgraph
{
public:
L2NormalizeSubgraph()
{
int input = addNodeToMatch("");
int square = addNodeToMatch("Square", input);
int reductionIndices = addNodeToMatch("Const");
int sum = addNodeToMatch("Sum", square, reductionIndices);
int y = addNodeToMatch("Const");
int maximum = addNodeToMatch("Maximum", sum, y);
int rsqrt = addNodeToMatch("Rsqrt", maximum);
addNodeToMatch("Mul", input, rsqrt);
setFusedNode("L2Normalize", input, reductionIndices);
}
};
class DeconvolutionValidKerasSubgraph : public Subgraph
{
public:
DeconvolutionValidKerasSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int kernel = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const"));
int add = addNodeToMatch("Add", mul, addNodeToMatch("Const"));
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const"));
int add_1 = addNodeToMatch("Add", mul_1, addNodeToMatch("Const"));
int pack = addNodeToMatch("Pack", strided_slice, add, add_1, addNodeToMatch("Const"));
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input);
// Put any unused Const op to the first input.
setFusedNode("Conv2DBackpropInput", stack, kernel, input);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp)
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX;
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY;
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW).
std::string padMode = fusedNode->attr().at("padding").s();
CV_Assert(padMode == "VALID");
const tensorflow::TensorShapeProto& kernelShape =
inputNodes[1]->mutable_attr()->at("value").tensor().tensor_shape();
CV_Assert(kernelShape.dim_size() == 4);
const int kernelHeight = kernelShape.dim(0).size();
const int kernelWidth = kernelShape.dim(1).size();
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor();
outShape->clear_int_val();
outShape->add_int_val(-1);
outShape->add_int_val(kernelHeight);
outShape->add_int_val(kernelWidth);
outShape->add_int_val(-1);
}
};
class DeconvolutionSameKerasSubgraph : public Subgraph
{
public:
DeconvolutionSameKerasSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int kernel = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const"));
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const"));
int pack = addNodeToMatch("Pack", strided_slice, mul, mul_1, addNodeToMatch("Const"));
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input);
// Put any unused Const op to the first input.
setFusedNode("Conv2DBackpropInput", stack, kernel, input);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp)
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX;
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY;
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW).
std::string padMode = fusedNode->attr().at("padding").s();
CV_Assert(padMode == "SAME");
const tensorflow::AttrValue_ListValue& strides = fusedNode->attr().at("strides").list();
CV_Assert(strides.i_size() == 4);
const int strideY = strides.i(1);
const int strideX = strides.i(2);
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor();
outShape->clear_int_val();
outShape->add_int_val(-1);
outShape->add_int_val(strideY);
outShape->add_int_val(strideX);
outShape->add_int_val(-1);
}
};
// In case of resizing by factor.
class ResizeBilinearSubgraph : public Subgraph
{
public:
ResizeBilinearSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int factorY = addNodeToMatch("Const");
int mul = addNodeToMatch("Mul", strided_slice, factorY);
shape = addNodeToMatch("Shape", input);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int factorX = addNodeToMatch("Const");
int mul_1 = addNodeToMatch("Mul", strided_slice, factorX);
int pack = addNodeToMatch("Pack", mul, mul_1);
addNodeToMatch("ResizeBilinear", input, pack);
setFusedNode("ResizeBilinear", input, factorY, factorX);
}
};
// In case of resizing by factor.
class UpsamplingKerasSubgraph : public Subgraph
{
public:
UpsamplingKerasSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int factors = addNodeToMatch("Const");
int mul = addNodeToMatch("Mul", strided_slice, factors);
addNodeToMatch("ResizeNearestNeighbor", input, mul);
setFusedNode("ResizeNearestNeighbor", input, factors);
}
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor());
CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, "");
// Height scale factor
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
factorY->clear_int_val();
factorY->clear_tensor_content();
factorY->add_int_val(factorsMat.at<int>(0, 0));
// Width scale factor.
tensorflow::NodeDef* factorXNode = net.add_node();
factorXNode->set_op("Const");
factorXNode->set_name(fusedNode->name() + "/factor_y");
tensorflow::AttrValue factorX;
factorX.mutable_tensor()->set_dtype(tensorflow::DT_INT32);
factorX.mutable_tensor()->add_int_val(factorsMat.at<int>(0, 1));
factorXNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", factorX));
fusedNode->add_input(factorXNode->name());
}
};
class ReshapeAsShapeSubgraph : public Subgraph
{
public:
ReshapeAsShapeSubgraph()
{
int input = addNodeToMatch("");
int shapeSrc = addNodeToMatch("");
int shape = addNodeToMatch("Shape", shapeSrc);
addNodeToMatch("Reshape", input, shape);
setFusedNode("Reshape", input, shapeSrc);
}
};
void simplifySubgraphs(tensorflow::GraphDef& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3)));
subgraphs.push_back(Ptr<Subgraph>(new L2NormalizeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionValidKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
int numNodes = net.node_size();
std::vector<int> matchedNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < subgraphs.size(); ++j)
{
if (subgraphs[j]->match(net, i, matchedNodesIds))
{
subgraphs[j]->replace(net, matchedNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
}
void RemoveIdentityOps(tensorflow::GraphDef& net)
{
typedef std::map<String, String> IdentityOpsMap;
IdentityOpsMap identity_ops;
std::vector<int> identity_ops_idx;
int layersCount = net.node_size();
for (int li = 0; li < layersCount; li++)
{
const tensorflow::NodeDef &layer = net.node(li);
String type = layer.op();
if (type == "Identity" || type == "Dropout") {
identity_ops_idx.push_back(li);
identity_ops[layer.name()] = layer.input(0);
}
}
for (int li = 0; li < layersCount; li++)
{
tensorflow::NodeDef* layer = net.mutable_node(li);
for (int input_id = 0; input_id < layer->input_size(); input_id++) {
String input_op_name = layer->input(input_id);
IdentityOpsMap::iterator it = identity_ops.find(input_op_name);
if (it != identity_ops.end()) {
layer->set_input(input_id, it->second);
}
}
}
std::sort(identity_ops_idx.begin(), identity_ops_idx.end());
int removed_nodes = 0;
for(size_t i = 0; i < identity_ops_idx.size(); i++) {
int start_id = identity_ops_idx[i] - removed_nodes;
net.mutable_node()->DeleteSubrange(start_id, 1);
removed_nodes++;
}
}
Mat getTensorContent(const tensorflow::TensorProto &tensor)
{
const std::string& content = tensor.tensor_content();
switch (tensor.dtype())
{
case tensorflow::DT_FLOAT:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<float>& field = tensor.float_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_DOUBLE:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<double>& field = tensor.double_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_INT32:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<int32_t>& field = tensor.int_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_HALF:
{
Mat halfs;
if (!content.empty())
{
static const int kHalfSize = 2;
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str());
}
else
{
const RepeatedField<int32_t>& field = tensor.half_val();
CV_Assert(!field.empty());
Mat ints(1, field.size(), CV_32SC1, (void*)field.data());
ints.convertTo(halfs, CV_16UC1);
}
// Reinterpret as a signed shorts just for a convertFp16 call.
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data);
Mat floats(halfs.size(), CV_32FC1);
convertFp16(halfsSigned, floats);
return floats;
}
case tensorflow::DT_QUINT8:
{
CV_Assert(!content.empty());
return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone();
}
default:
CV_Error(Error::StsError, "Tensor's data type is not supported");
break;
}
return Mat();
}
void releaseTensor(tensorflow::TensorProto* tensor)
{
if (!tensor->mutable_tensor_content()->empty())
{
delete tensor->release_tensor_content();
}
}
static void permute(google::protobuf::RepeatedPtrField<tensorflow::NodeDef>* data,
const std::vector<int>& indices)
{
const int num = data->size();
CV_Assert(num == indices.size());
std::vector<int> elemIdToPos(num);
std::vector<int> posToElemId(num);
for (int i = 0; i < num; ++i)
{
elemIdToPos[i] = i;
posToElemId[i] = i;
}
for (int i = 0; i < num; ++i)
{
int elemId = indices[i];
int pos = elemIdToPos[elemId];
if (pos != i)
{
data->SwapElements(i, pos);
const int swappedElemId = posToElemId[i];
elemIdToPos[elemId] = i;
elemIdToPos[swappedElemId] = pos;
posToElemId[i] = elemId;
posToElemId[pos] = swappedElemId;
}
}
}
// Is based on tensorflow::graph_transforms::SortByExecutionOrder
void sortByExecutionOrder(tensorflow::GraphDef& net)
{
// Maps node's name to index at net.node() list.
std::map<std::string, int> nodesMap;
std::map<std::string, int>::iterator nodesMapIt;
for (int i = 0; i < net.node_size(); ++i)
{
const tensorflow::NodeDef& node = net.node(i);
nodesMap.insert(std::make_pair(node.name(), i));
}
// Indices of nodes which use specific node as input.
std::vector<std::vector<int> > edges(nodesMap.size());
std::vector<int> numRefsToAdd(nodesMap.size(), 0);
std::vector<int> nodesToAdd;
for (int i = 0; i < net.node_size(); ++i)
{
const tensorflow::NodeDef& node = net.node(i);
for (int j = 0; j < node.input_size(); ++j)
{
std::string inpName = node.input(j);
inpName = inpName.substr(0, inpName.rfind(':'));
inpName = inpName.substr(inpName.find('^') + 1);
nodesMapIt = nodesMap.find(inpName);
CV_Assert(nodesMapIt != nodesMap.end());
edges[nodesMapIt->second].push_back(i);
}
if (node.input_size() == 0)
nodesToAdd.push_back(i);
else
{
if (node.op() == "Merge" || node.op() == "RefMerge")
{
int numControlEdges = 0;
for (int j = 0; j < node.input_size(); ++j)
numControlEdges += node.input(j)[0] == '^';
numRefsToAdd[i] = numControlEdges + 1;
}
else
numRefsToAdd[i] = node.input_size();
}
}
std::vector<int> permIds;
permIds.reserve(net.node_size());
while (!nodesToAdd.empty())
{
int nodeToAdd = nodesToAdd.back();
nodesToAdd.pop_back();
permIds.push_back(nodeToAdd);
// std::cout << net.node(nodeToAdd).name() << '\n';
for (int i = 0; i < edges[nodeToAdd].size(); ++i)
{
int consumerId = edges[nodeToAdd][i];
if (numRefsToAdd[consumerId] > 0)
{
if (numRefsToAdd[consumerId] == 1)
nodesToAdd.push_back(consumerId);
else
CV_Assert(numRefsToAdd[consumerId] >= 0);
numRefsToAdd[consumerId] -= 1;
}
}
}
CV_Assert(permIds.size() == net.node_size());
permute(net.mutable_node(), permIds);
}
CV__DNN_INLINE_NS_END
}} // namespace dnn, namespace cv
#endif // HAVE_PROTOBUF