Open Source Computer Vision Library
https://opencv.org/
275 lines
11 KiB
275 lines
11 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include <opencv2/imgproc.hpp> |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
#include "../ie_ngraph.hpp" |
|
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4) |
|
#include <ngraph/op/interpolate.hpp> |
|
#else |
|
#include <ngraph/op/experimental/layers/interpolate.hpp> |
|
#endif |
|
#endif |
|
|
|
namespace cv { namespace dnn { |
|
|
|
class ResizeLayerImpl : public ResizeLayer |
|
{ |
|
public: |
|
ResizeLayerImpl(const LayerParams& params) : zoomFactorWidth(params.get<float>("zoom_factor_x", params.get<float>("zoom_factor", 0))), |
|
zoomFactorHeight(params.get<float>("zoom_factor_y", params.get<float>("zoom_factor", 0))), |
|
scaleWidth(0), scaleHeight(0) |
|
{ |
|
setParamsFrom(params); |
|
outWidth = params.get<float>("width", 0); |
|
outHeight = params.get<float>("height", 0); |
|
if (params.has("zoom_factor")) |
|
{ |
|
CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y")); |
|
} |
|
else if (params.has("zoom_factor_x") || params.has("zoom_factor_y")) |
|
{ |
|
CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y")); |
|
} |
|
interpolation = params.get<String>("interpolation"); |
|
CV_Assert(interpolation == "nearest" || interpolation == "opencv_linear" || interpolation == "bilinear"); |
|
|
|
alignCorners = params.get<bool>("align_corners", false); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert_N(inputs.size() == 1 || inputs.size() == 2, inputs[0].size() == 4); |
|
outputs.resize(1, inputs[0]); |
|
if (inputs.size() == 1) { |
|
outputs[0][2] = zoomFactorHeight > 0 ? (outputs[0][2] * zoomFactorHeight) : outHeight; |
|
outputs[0][3] = zoomFactorWidth > 0 ? (outputs[0][3] * zoomFactorWidth) : outWidth; |
|
} else { |
|
outputs[0][2] = inputs[1][2]; |
|
outputs[0][3] = inputs[1][3]; |
|
} |
|
// We can work in-place (do nothing) if input shape == output shape. |
|
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
{ |
|
return (interpolation == "nearest" && scaleWidth == scaleHeight) || |
|
(interpolation == "bilinear"); |
|
} |
|
#endif |
|
return backendId == DNN_BACKEND_OPENCV; |
|
} |
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
outHeight = outputs[0].size[2]; |
|
outWidth = outputs[0].size[3]; |
|
if (alignCorners && outHeight > 1) |
|
scaleHeight = static_cast<float>(inputs[0].size[2] - 1) / (outHeight - 1); |
|
else |
|
scaleHeight = static_cast<float>(inputs[0].size[2]) / outHeight; |
|
|
|
if (alignCorners && outWidth > 1) |
|
scaleWidth = static_cast<float>(inputs[0].size[3] - 1) / (outWidth - 1); |
|
else |
|
scaleWidth = static_cast<float>(inputs[0].size[3]) / outWidth; |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
if (inputs_arr.depth() == CV_16S) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs, internals; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
internals_arr.getMatVector(internals); |
|
|
|
if (outHeight == inputs[0].size[2] && outWidth == inputs[0].size[3]) |
|
return; |
|
|
|
Mat& inp = inputs[0]; |
|
Mat& out = outputs[0]; |
|
if (interpolation == "nearest" || interpolation == "opencv_linear") |
|
{ |
|
InterpolationFlags mode = interpolation == "nearest" ? INTER_NEAREST : INTER_LINEAR; |
|
for (size_t n = 0; n < inputs[0].size[0]; ++n) |
|
{ |
|
for (size_t ch = 0; ch < inputs[0].size[1]; ++ch) |
|
{ |
|
resize(getPlane(inp, n, ch), getPlane(out, n, ch), |
|
Size(outWidth, outHeight), 0, 0, mode); |
|
} |
|
} |
|
} |
|
else if (interpolation == "bilinear") |
|
{ |
|
const int inpHeight = inp.size[2]; |
|
const int inpWidth = inp.size[3]; |
|
const int inpSpatialSize = inpHeight * inpWidth; |
|
const int outSpatialSize = outHeight * outWidth; |
|
const int numPlanes = inp.size[0] * inp.size[1]; |
|
CV_Assert_N(inp.isContinuous(), out.isContinuous()); |
|
|
|
Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight); |
|
Mat outPlanes = out.reshape(1, numPlanes * outHeight); |
|
for (int y = 0; y < outHeight; ++y) |
|
{ |
|
float input_y = y * scaleHeight; |
|
int y0 = static_cast<int>(input_y); |
|
const float* inpData_row0 = inpPlanes.ptr<float>(y0); |
|
const float* inpData_row1 = inpPlanes.ptr<float>(std::min(y0 + 1, inpHeight - 1)); |
|
for (int x = 0; x < outWidth; ++x) |
|
{ |
|
float input_x = x * scaleWidth; |
|
int x0 = static_cast<int>(input_x); |
|
int x1 = std::min(x0 + 1, inpWidth - 1); |
|
|
|
float* outData = outPlanes.ptr<float>(y, x); |
|
const float* inpData_row0_c = inpData_row0; |
|
const float* inpData_row1_c = inpData_row1; |
|
for (int c = 0; c < numPlanes; ++c) |
|
{ |
|
*outData = inpData_row0_c[x0] + |
|
(input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) + |
|
(input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] + |
|
(input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0])); |
|
|
|
inpData_row0_c += inpSpatialSize; |
|
inpData_row1_c += inpSpatialSize; |
|
outData += outSpatialSize; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation); |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
|
{ |
|
InferenceEngine::Builder::Layer ieLayer(name); |
|
ieLayer.setName(name); |
|
if (interpolation == "nearest") |
|
{ |
|
ieLayer.setType("Resample"); |
|
ieLayer.getParameters()["type"] = std::string("caffe.ResampleParameter.NEAREST"); |
|
ieLayer.getParameters()["antialias"] = false; |
|
if (scaleWidth != scaleHeight) |
|
CV_Error(Error::StsNotImplemented, "resample with sw != sh"); |
|
ieLayer.getParameters()["factor"] = 1.0f / scaleWidth; |
|
} |
|
else if (interpolation == "bilinear") |
|
{ |
|
ieLayer.setType("Interp"); |
|
ieLayer.getParameters()["pad_beg"] = 0; |
|
ieLayer.getParameters()["pad_end"] = 0; |
|
ieLayer.getParameters()["align_corners"] = alignCorners; |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unsupported interpolation: " + interpolation); |
|
ieLayer.getParameters()["width"] = outWidth; |
|
ieLayer.getParameters()["height"] = outHeight; |
|
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(1)); |
|
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1)); |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
} |
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019 |
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
|
|
ngraph::op::InterpolateAttrs attrs; |
|
attrs.pads_begin.push_back(0); |
|
attrs.pads_end.push_back(0); |
|
attrs.axes = ngraph::AxisSet{2, 3}; |
|
attrs.align_corners = alignCorners; |
|
|
|
if (interpolation == "nearest") { |
|
attrs.mode = "nearest"; |
|
attrs.antialias = false; |
|
} else if (interpolation == "bilinear") { |
|
attrs.mode = "linear"; |
|
} else { |
|
CV_Error(Error::StsNotImplemented, "Unsupported interpolation: " + interpolation); |
|
} |
|
|
|
std::vector<int64_t> shape = {outHeight, outWidth}; |
|
auto out_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, shape.data()); |
|
auto interp = std::make_shared<ngraph::op::Interpolate>(ieInpNode, out_shape, attrs); |
|
return Ptr<BackendNode>(new InfEngineNgraphNode(interp)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
protected: |
|
int outWidth, outHeight; |
|
const float zoomFactorWidth, zoomFactorHeight; |
|
String interpolation; |
|
float scaleWidth, scaleHeight; |
|
bool alignCorners; |
|
}; |
|
|
|
|
|
Ptr<ResizeLayer> ResizeLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ResizeLayer>(new ResizeLayerImpl(params)); |
|
} |
|
|
|
class InterpLayerImpl CV_FINAL : public ResizeLayerImpl |
|
{ |
|
public: |
|
InterpLayerImpl(const LayerParams& params) : ResizeLayerImpl(params) {} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4); |
|
outputs.resize(1, inputs[0]); |
|
outputs[0][2] = zoomFactorHeight > 0 ? (1 + zoomFactorHeight * (outputs[0][2] - 1)) : outHeight; |
|
outputs[0][3] = zoomFactorWidth > 0 ? (1 + zoomFactorWidth * (outputs[0][3] - 1)) : outWidth; |
|
// We can work in-place (do nothing) if input shape == output shape. |
|
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); |
|
} |
|
}; |
|
|
|
Ptr<Layer> InterpLayer::create(const LayerParams& params) |
|
{ |
|
LayerParams lp(params); |
|
lp.set("interpolation", "bilinear"); |
|
lp.set("align_corners", true); |
|
return Ptr<Layer>(new InterpLayerImpl(lp)); |
|
} |
|
|
|
} // namespace dnn |
|
} // namespace cv
|
|
|