mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2593 lines
67 KiB
2593 lines
67 KiB
/* $Id: tif_getimage.c,v 1.1 2005-06-17 13:54:52 vp153 Exp $ */ |
|
|
|
/* |
|
* Copyright (c) 1991-1997 Sam Leffler |
|
* Copyright (c) 1991-1997 Silicon Graphics, Inc. |
|
* |
|
* Permission to use, copy, modify, distribute, and sell this software and |
|
* its documentation for any purpose is hereby granted without fee, provided |
|
* that (i) the above copyright notices and this permission notice appear in |
|
* all copies of the software and related documentation, and (ii) the names of |
|
* Sam Leffler and Silicon Graphics may not be used in any advertising or |
|
* publicity relating to the software without the specific, prior written |
|
* permission of Sam Leffler and Silicon Graphics. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
|
* |
|
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR |
|
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, |
|
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, |
|
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF |
|
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE |
|
* OF THIS SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* TIFF Library |
|
* |
|
* Read and return a packed RGBA image. |
|
*/ |
|
#include "tiffiop.h" |
|
#include <stdio.h> |
|
|
|
static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); |
|
static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); |
|
static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); |
|
static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); |
|
static int pickTileContigCase(TIFFRGBAImage*); |
|
static int pickTileSeparateCase(TIFFRGBAImage*); |
|
|
|
static const char photoTag[] = "PhotometricInterpretation"; |
|
|
|
/* |
|
* Helper constants used in Orientation tag handling |
|
*/ |
|
#define FLIP_VERTICALLY 0x01 |
|
#define FLIP_HORIZONTALLY 0x02 |
|
|
|
/* |
|
* Color conversion constants. We will define display types here. |
|
*/ |
|
|
|
TIFFDisplay display_sRGB = { |
|
{ /* XYZ -> luminance matrix */ |
|
{ 3.2410F, -1.5374F, -0.4986F }, |
|
{ -0.9692F, 1.8760F, 0.0416F }, |
|
{ 0.0556F, -0.2040F, 1.0570F } |
|
}, |
|
100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ |
|
255, 255, 255, /* Pixel values for ref. white */ |
|
1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ |
|
2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ |
|
}; |
|
|
|
/* |
|
* Check the image to see if TIFFReadRGBAImage can deal with it. |
|
* 1/0 is returned according to whether or not the image can |
|
* be handled. If 0 is returned, emsg contains the reason |
|
* why it is being rejected. |
|
*/ |
|
int |
|
TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) |
|
{ |
|
TIFFDirectory* td = &tif->tif_dir; |
|
uint16 photometric; |
|
int colorchannels; |
|
|
|
if (!tif->tif_decodestatus) { |
|
sprintf(emsg, "Sorry, requested compression method is not configured"); |
|
return (0); |
|
} |
|
switch (td->td_bitspersample) { |
|
case 1: case 2: case 4: |
|
case 8: case 16: |
|
break; |
|
default: |
|
sprintf(emsg, "Sorry, can not handle images with %d-bit samples", |
|
td->td_bitspersample); |
|
return (0); |
|
} |
|
colorchannels = td->td_samplesperpixel - td->td_extrasamples; |
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { |
|
switch (colorchannels) { |
|
case 1: |
|
photometric = PHOTOMETRIC_MINISBLACK; |
|
break; |
|
case 3: |
|
photometric = PHOTOMETRIC_RGB; |
|
break; |
|
default: |
|
sprintf(emsg, "Missing needed %s tag", photoTag); |
|
return (0); |
|
} |
|
} |
|
switch (photometric) { |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
case PHOTOMETRIC_PALETTE: |
|
if (td->td_planarconfig == PLANARCONFIG_CONTIG |
|
&& td->td_samplesperpixel != 1 |
|
&& td->td_bitspersample < 8 ) { |
|
sprintf(emsg, |
|
"Sorry, can not handle contiguous data with %s=%d, " |
|
"and %s=%d and Bits/Sample=%d", |
|
photoTag, photometric, |
|
"Samples/pixel", td->td_samplesperpixel, |
|
td->td_bitspersample); |
|
return (0); |
|
} |
|
/* |
|
** We should likely validate that any extra samples are either |
|
** to be ignored, or are alpha, and if alpha we should try to use |
|
** them. But for now we won't bother with this. |
|
*/ |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
if (td->td_planarconfig != PLANARCONFIG_CONTIG) { |
|
sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", |
|
"Planarconfiguration", td->td_planarconfig); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_RGB: |
|
if (colorchannels < 3) { |
|
sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", |
|
"Color channels", colorchannels); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: |
|
if (td->td_inkset != INKSET_CMYK) { |
|
sprintf(emsg, "Sorry, can not handle separated image with %s=%d", |
|
"InkSet", td->td_inkset); |
|
return (0); |
|
} |
|
if (td->td_samplesperpixel < 4) { |
|
sprintf(emsg, "Sorry, can not handle separated image with %s=%d", |
|
"Samples/pixel", td->td_samplesperpixel); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_LOGL: |
|
if (td->td_compression != COMPRESSION_SGILOG) { |
|
sprintf(emsg, "Sorry, LogL data must have %s=%d", |
|
"Compression", COMPRESSION_SGILOG); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_LOGLUV: |
|
if (td->td_compression != COMPRESSION_SGILOG && |
|
td->td_compression != COMPRESSION_SGILOG24) { |
|
sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", |
|
"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); |
|
return (0); |
|
} |
|
if (td->td_planarconfig != PLANARCONFIG_CONTIG) { |
|
sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", |
|
"Planarconfiguration", td->td_planarconfig); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_CIELAB: |
|
break; |
|
default: |
|
sprintf(emsg, "Sorry, can not handle image with %s=%d", |
|
photoTag, photometric); |
|
return (0); |
|
} |
|
return (1); |
|
} |
|
|
|
void |
|
TIFFRGBAImageEnd(TIFFRGBAImage* img) |
|
{ |
|
if (img->Map) |
|
_TIFFfree(img->Map), img->Map = NULL; |
|
if (img->BWmap) |
|
_TIFFfree(img->BWmap), img->BWmap = NULL; |
|
if (img->PALmap) |
|
_TIFFfree(img->PALmap), img->PALmap = NULL; |
|
if (img->ycbcr) |
|
_TIFFfree(img->ycbcr), img->ycbcr = NULL; |
|
if (img->cielab) |
|
_TIFFfree(img->cielab), img->cielab = NULL; |
|
|
|
if( img->redcmap ) { |
|
_TIFFfree( img->redcmap ); |
|
_TIFFfree( img->greencmap ); |
|
_TIFFfree( img->bluecmap ); |
|
} |
|
} |
|
|
|
static int |
|
isCCITTCompression(TIFF* tif) |
|
{ |
|
uint16 compress; |
|
TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); |
|
return (compress == COMPRESSION_CCITTFAX3 || |
|
compress == COMPRESSION_CCITTFAX4 || |
|
compress == COMPRESSION_CCITTRLE || |
|
compress == COMPRESSION_CCITTRLEW); |
|
} |
|
|
|
int |
|
TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) |
|
{ |
|
uint16* sampleinfo; |
|
uint16 extrasamples; |
|
uint16 planarconfig; |
|
uint16 compress; |
|
int colorchannels; |
|
uint16 *red_orig, *green_orig, *blue_orig; |
|
int n_color; |
|
|
|
/* Initialize to normal values */ |
|
img->row_offset = 0; |
|
img->col_offset = 0; |
|
img->redcmap = NULL; |
|
img->greencmap = NULL; |
|
img->bluecmap = NULL; |
|
img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ |
|
|
|
img->tif = tif; |
|
img->stoponerr = stop; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); |
|
switch (img->bitspersample) { |
|
case 1: case 2: case 4: |
|
case 8: case 16: |
|
break; |
|
default: |
|
sprintf(emsg, "Sorry, can not handle images with %d-bit samples", |
|
img->bitspersample); |
|
return (0); |
|
} |
|
img->alpha = 0; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, |
|
&extrasamples, &sampleinfo); |
|
if (extrasamples >= 1) |
|
{ |
|
switch (sampleinfo[0]) { |
|
case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */ |
|
if (img->samplesperpixel > 3) /* correct info about alpha channel */ |
|
img->alpha = EXTRASAMPLE_ASSOCALPHA; |
|
break; |
|
case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ |
|
case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ |
|
img->alpha = sampleinfo[0]; |
|
break; |
|
} |
|
} |
|
|
|
#ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA |
|
if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) |
|
img->photometric = PHOTOMETRIC_MINISWHITE; |
|
|
|
if( extrasamples == 0 |
|
&& img->samplesperpixel == 4 |
|
&& img->photometric == PHOTOMETRIC_RGB ) |
|
{ |
|
img->alpha = EXTRASAMPLE_ASSOCALPHA; |
|
extrasamples = 1; |
|
} |
|
#endif |
|
|
|
colorchannels = img->samplesperpixel - extrasamples; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); |
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { |
|
switch (colorchannels) { |
|
case 1: |
|
if (isCCITTCompression(tif)) |
|
img->photometric = PHOTOMETRIC_MINISWHITE; |
|
else |
|
img->photometric = PHOTOMETRIC_MINISBLACK; |
|
break; |
|
case 3: |
|
img->photometric = PHOTOMETRIC_RGB; |
|
break; |
|
default: |
|
sprintf(emsg, "Missing needed %s tag", photoTag); |
|
return (0); |
|
} |
|
} |
|
switch (img->photometric) { |
|
case PHOTOMETRIC_PALETTE: |
|
if (!TIFFGetField(tif, TIFFTAG_COLORMAP, |
|
&red_orig, &green_orig, &blue_orig)) { |
|
sprintf(emsg, "Missing required \"Colormap\" tag"); |
|
return (0); |
|
} |
|
|
|
/* copy the colormaps so we can modify them */ |
|
n_color = (1L << img->bitspersample); |
|
img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); |
|
img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); |
|
img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); |
|
if( !img->redcmap || !img->greencmap || !img->bluecmap ) { |
|
sprintf(emsg, "Out of memory for colormap copy"); |
|
return (0); |
|
} |
|
|
|
_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); |
|
_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); |
|
_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); |
|
|
|
/* fall thru... */ |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
if (planarconfig == PLANARCONFIG_CONTIG |
|
&& img->samplesperpixel != 1 |
|
&& img->bitspersample < 8 ) { |
|
sprintf(emsg, |
|
"Sorry, can not handle contiguous data with %s=%d, " |
|
"and %s=%d and Bits/Sample=%d", |
|
photoTag, img->photometric, |
|
"Samples/pixel", img->samplesperpixel, |
|
img->bitspersample); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
if (planarconfig != PLANARCONFIG_CONTIG) { |
|
sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", |
|
"Planarconfiguration", planarconfig); |
|
return (0); |
|
} |
|
/* It would probably be nice to have a reality check here. */ |
|
if (planarconfig == PLANARCONFIG_CONTIG) |
|
/* can rely on libjpeg to convert to RGB */ |
|
/* XXX should restore current state on exit */ |
|
switch (compress) { |
|
case COMPRESSION_OJPEG: |
|
case COMPRESSION_JPEG: |
|
TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); |
|
img->photometric = PHOTOMETRIC_RGB; |
|
break; |
|
|
|
default: |
|
/* do nothing */; |
|
break; |
|
} |
|
break; |
|
case PHOTOMETRIC_RGB: |
|
if (colorchannels < 3) { |
|
sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", |
|
"Color channels", colorchannels); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: { |
|
uint16 inkset; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); |
|
if (inkset != INKSET_CMYK) { |
|
sprintf(emsg, "Sorry, can not handle separated image with %s=%d", |
|
"InkSet", inkset); |
|
return (0); |
|
} |
|
if (img->samplesperpixel < 4) { |
|
sprintf(emsg, "Sorry, can not handle separated image with %s=%d", |
|
"Samples/pixel", img->samplesperpixel); |
|
return (0); |
|
} |
|
break; |
|
} |
|
case PHOTOMETRIC_LOGL: |
|
if (compress != COMPRESSION_SGILOG) { |
|
sprintf(emsg, "Sorry, LogL data must have %s=%d", |
|
"Compression", COMPRESSION_SGILOG); |
|
return (0); |
|
} |
|
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); |
|
img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ |
|
img->bitspersample = 8; |
|
break; |
|
case PHOTOMETRIC_LOGLUV: |
|
if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { |
|
sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", |
|
"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); |
|
return (0); |
|
} |
|
if (planarconfig != PLANARCONFIG_CONTIG) { |
|
sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", |
|
"Planarconfiguration", planarconfig); |
|
return (0); |
|
} |
|
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); |
|
img->photometric = PHOTOMETRIC_RGB; /* little white lie */ |
|
img->bitspersample = 8; |
|
break; |
|
case PHOTOMETRIC_CIELAB: |
|
break; |
|
default: |
|
sprintf(emsg, "Sorry, can not handle image with %s=%d", |
|
photoTag, img->photometric); |
|
return (0); |
|
} |
|
img->Map = NULL; |
|
img->BWmap = NULL; |
|
img->PALmap = NULL; |
|
img->ycbcr = NULL; |
|
img->cielab = NULL; |
|
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); |
|
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); |
|
img->isContig = |
|
!(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1); |
|
if (img->isContig) { |
|
img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig; |
|
if (!pickTileContigCase(img)) { |
|
sprintf(emsg, "Sorry, can not handle image"); |
|
return 0; |
|
} |
|
} else { |
|
img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate; |
|
if (!pickTileSeparateCase(img)) { |
|
sprintf(emsg, "Sorry, can not handle image"); |
|
return 0; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
int |
|
TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
|
{ |
|
if (img->get == NULL) { |
|
TIFFError(TIFFFileName(img->tif), "No \"get\" routine setup"); |
|
return (0); |
|
} |
|
if (img->put.any == NULL) { |
|
TIFFError(TIFFFileName(img->tif), |
|
"No \"put\" routine setupl; probably can not handle image format"); |
|
return (0); |
|
} |
|
return (*img->get)(img, raster, w, h); |
|
} |
|
|
|
/* |
|
* Read the specified image into an ABGR-format rastertaking in account |
|
* specified orientation. |
|
*/ |
|
int |
|
TIFFReadRGBAImageOriented(TIFF* tif, |
|
uint32 rwidth, uint32 rheight, uint32* raster, |
|
int orientation, int stop) |
|
{ |
|
char emsg[1024] = ""; |
|
TIFFRGBAImage img; |
|
int ok; |
|
|
|
if (TIFFRGBAImageOK(tif, emsg) && |
|
TIFFRGBAImageBegin(&img, tif, stop, emsg)) { |
|
img.req_orientation = orientation; |
|
/* XXX verify rwidth and rheight against width and height */ |
|
ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, |
|
rwidth, img.height); |
|
TIFFRGBAImageEnd(&img); |
|
} else { |
|
TIFFError(TIFFFileName(tif), emsg); |
|
ok = 0; |
|
} |
|
return (ok); |
|
} |
|
|
|
/* |
|
* Read the specified image into an ABGR-format raster. Use bottom left |
|
* origin for raster by default. |
|
*/ |
|
int |
|
TIFFReadRGBAImage(TIFF* tif, |
|
uint32 rwidth, uint32 rheight, uint32* raster, int stop) |
|
{ |
|
return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, |
|
ORIENTATION_BOTLEFT, stop); |
|
} |
|
|
|
static int |
|
setorientation(TIFFRGBAImage* img) |
|
{ |
|
switch (img->orientation) { |
|
case ORIENTATION_TOPLEFT: |
|
case ORIENTATION_LEFTTOP: |
|
if (img->req_orientation == ORIENTATION_TOPRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTTOP) |
|
return FLIP_HORIZONTALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTBOT) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTLEFT || |
|
img->req_orientation == ORIENTATION_LEFTBOT) |
|
return FLIP_VERTICALLY; |
|
else |
|
return 0; |
|
case ORIENTATION_TOPRIGHT: |
|
case ORIENTATION_RIGHTTOP: |
|
if (img->req_orientation == ORIENTATION_TOPLEFT || |
|
img->req_orientation == ORIENTATION_LEFTTOP) |
|
return FLIP_HORIZONTALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTBOT) |
|
return FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTLEFT || |
|
img->req_orientation == ORIENTATION_LEFTBOT) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else |
|
return 0; |
|
case ORIENTATION_BOTRIGHT: |
|
case ORIENTATION_RIGHTBOT: |
|
if (img->req_orientation == ORIENTATION_TOPLEFT || |
|
img->req_orientation == ORIENTATION_LEFTTOP) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_TOPRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTTOP) |
|
return FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTLEFT || |
|
img->req_orientation == ORIENTATION_LEFTBOT) |
|
return FLIP_HORIZONTALLY; |
|
else |
|
return 0; |
|
case ORIENTATION_BOTLEFT: |
|
case ORIENTATION_LEFTBOT: |
|
if (img->req_orientation == ORIENTATION_TOPLEFT || |
|
img->req_orientation == ORIENTATION_LEFTTOP) |
|
return FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_TOPRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTTOP) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTBOT) |
|
return FLIP_HORIZONTALLY; |
|
else |
|
return 0; |
|
default: /* NOTREACHED */ |
|
return 0; |
|
} |
|
} |
|
|
|
/* |
|
* Get an tile-organized image that has |
|
* PlanarConfiguration contiguous if SamplesPerPixel > 1 |
|
* or |
|
* SamplesPerPixel == 1 |
|
*/ |
|
static int |
|
gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
|
{ |
|
TIFF* tif = img->tif; |
|
tileContigRoutine put = img->put.contig; |
|
uint32 col, row, y, rowstoread; |
|
uint32 pos; |
|
uint32 tw, th; |
|
unsigned char* buf; |
|
int32 fromskew, toskew; |
|
uint32 nrow; |
|
int ret = 1, flip; |
|
|
|
buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif)); |
|
if (buf == 0) { |
|
TIFFError(TIFFFileName(tif), "No space for tile buffer"); |
|
return (0); |
|
} |
|
_TIFFmemset(buf, 0, TIFFTileSize(tif)); |
|
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); |
|
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) { |
|
y = h - 1; |
|
toskew = -(int32)(tw + w); |
|
} |
|
else { |
|
y = 0; |
|
toskew = -(int32)(tw - w); |
|
} |
|
|
|
for (row = 0; row < h; row += nrow) |
|
{ |
|
rowstoread = th - (row + img->row_offset) % th; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
for (col = 0; col < w; col += tw) |
|
{ |
|
if (TIFFReadTile(tif, buf, col+img->col_offset, |
|
row+img->row_offset, 0, 0) < 0 && img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); |
|
|
|
if (col + tw > w) |
|
{ |
|
/* |
|
* Tile is clipped horizontally. Calculate |
|
* visible portion and skewing factors. |
|
*/ |
|
uint32 npix = w - col; |
|
fromskew = tw - npix; |
|
(*put)(img, raster+y*w+col, col, y, |
|
npix, nrow, fromskew, toskew + fromskew, buf + pos); |
|
} |
|
else |
|
{ |
|
(*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos); |
|
} |
|
} |
|
|
|
y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); |
|
} |
|
_TIFFfree(buf); |
|
|
|
if (flip & FLIP_HORIZONTALLY) { |
|
uint32 line; |
|
|
|
for (line = 0; line < h; line++) { |
|
uint32 *left = raster + (line * w); |
|
uint32 *right = left + w - 1; |
|
|
|
while ( left < right ) { |
|
uint32 temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++, right--; |
|
} |
|
} |
|
} |
|
|
|
return (ret); |
|
} |
|
|
|
/* |
|
* Get an tile-organized image that has |
|
* SamplesPerPixel > 1 |
|
* PlanarConfiguration separated |
|
* We assume that all such images are RGB. |
|
*/ |
|
static int |
|
gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
|
{ |
|
TIFF* tif = img->tif; |
|
tileSeparateRoutine put = img->put.separate; |
|
uint32 col, row, y, rowstoread; |
|
uint32 pos; |
|
uint32 tw, th; |
|
unsigned char* buf; |
|
unsigned char* r; |
|
unsigned char* g; |
|
unsigned char* b; |
|
unsigned char* a; |
|
tsize_t tilesize; |
|
int32 fromskew, toskew; |
|
int alpha = img->alpha; |
|
uint32 nrow; |
|
int ret = 1, flip; |
|
|
|
tilesize = TIFFTileSize(tif); |
|
buf = (unsigned char*) _TIFFmalloc(4*tilesize); |
|
if (buf == 0) { |
|
TIFFError(TIFFFileName(tif), "No space for tile buffer"); |
|
return (0); |
|
} |
|
_TIFFmemset(buf, 0, 4*tilesize); |
|
r = buf; |
|
g = r + tilesize; |
|
b = g + tilesize; |
|
a = b + tilesize; |
|
if (!alpha) |
|
_TIFFmemset(a, 0xff, tilesize); |
|
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); |
|
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) { |
|
y = h - 1; |
|
toskew = -(int32)(tw + w); |
|
} |
|
else { |
|
y = 0; |
|
toskew = -(int32)(tw - w); |
|
} |
|
|
|
for (row = 0; row < h; row += nrow) |
|
{ |
|
rowstoread = th - (row + img->row_offset) % th; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
for (col = 0; col < w; col += tw) |
|
{ |
|
if (TIFFReadTile(tif, r, col+img->col_offset, |
|
row+img->row_offset,0,0) < 0 && img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (TIFFReadTile(tif, g, col+img->col_offset, |
|
row+img->row_offset,0,1) < 0 && img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (TIFFReadTile(tif, b, col+img->col_offset, |
|
row+img->row_offset,0,2) < 0 && img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (alpha && TIFFReadTile(tif,a,col+img->col_offset, |
|
row+img->row_offset,0,3) < 0 && img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); |
|
|
|
if (col + tw > w) |
|
{ |
|
/* |
|
* Tile is clipped horizontally. Calculate |
|
* visible portion and skewing factors. |
|
*/ |
|
uint32 npix = w - col; |
|
fromskew = tw - npix; |
|
(*put)(img, raster+y*w+col, col, y, |
|
npix, nrow, fromskew, toskew + fromskew, |
|
r + pos, g + pos, b + pos, a + pos); |
|
} else { |
|
(*put)(img, raster+y*w+col, col, y, |
|
tw, nrow, 0, toskew, r + pos, g + pos, b + pos, a + pos); |
|
} |
|
} |
|
|
|
y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); |
|
} |
|
|
|
if (flip & FLIP_HORIZONTALLY) { |
|
uint32 line; |
|
|
|
for (line = 0; line < h; line++) { |
|
uint32 *left = raster + (line * w); |
|
uint32 *right = left + w - 1; |
|
|
|
while ( left < right ) { |
|
uint32 temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++, right--; |
|
} |
|
} |
|
} |
|
|
|
_TIFFfree(buf); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* Get a strip-organized image that has |
|
* PlanarConfiguration contiguous if SamplesPerPixel > 1 |
|
* or |
|
* SamplesPerPixel == 1 |
|
*/ |
|
static int |
|
gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
|
{ |
|
TIFF* tif = img->tif; |
|
tileContigRoutine put = img->put.contig; |
|
uint32 row, y, nrow, rowstoread; |
|
uint32 pos; |
|
unsigned char* buf; |
|
uint32 rowsperstrip; |
|
uint32 imagewidth = img->width; |
|
tsize_t scanline; |
|
int32 fromskew, toskew; |
|
int ret = 1, flip; |
|
|
|
buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif)); |
|
if (buf == 0) { |
|
TIFFError(TIFFFileName(tif), "No space for strip buffer"); |
|
return (0); |
|
} |
|
_TIFFmemset(buf, 0, TIFFStripSize(tif)); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) { |
|
y = h - 1; |
|
toskew = -(int32)(w + w); |
|
} else { |
|
y = 0; |
|
toskew = -(int32)(w - w); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
|
scanline = TIFFScanlineSize(tif); |
|
fromskew = (w < imagewidth ? imagewidth - w : 0); |
|
for (row = 0; row < h; row += nrow) |
|
{ |
|
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
if (TIFFReadEncodedStrip(tif, |
|
TIFFComputeStrip(tif,row+img->row_offset, 0), |
|
buf, |
|
((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 |
|
&& img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
pos = ((row + img->row_offset) % rowsperstrip) * scanline; |
|
(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); |
|
y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); |
|
} |
|
|
|
if (flip & FLIP_HORIZONTALLY) { |
|
uint32 line; |
|
|
|
for (line = 0; line < h; line++) { |
|
uint32 *left = raster + (line * w); |
|
uint32 *right = left + w - 1; |
|
|
|
while ( left < right ) { |
|
uint32 temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++, right--; |
|
} |
|
} |
|
} |
|
|
|
_TIFFfree(buf); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* Get a strip-organized image with |
|
* SamplesPerPixel > 1 |
|
* PlanarConfiguration separated |
|
* We assume that all such images are RGB. |
|
*/ |
|
static int |
|
gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
|
{ |
|
TIFF* tif = img->tif; |
|
tileSeparateRoutine put = img->put.separate; |
|
unsigned char *buf; |
|
unsigned char *r, *g, *b, *a; |
|
uint32 row, y, nrow, rowstoread; |
|
uint32 pos; |
|
tsize_t scanline; |
|
uint32 rowsperstrip, offset_row; |
|
uint32 imagewidth = img->width; |
|
tsize_t stripsize; |
|
int32 fromskew, toskew; |
|
int alpha = img->alpha; |
|
int ret = 1, flip; |
|
|
|
stripsize = TIFFStripSize(tif); |
|
r = buf = (unsigned char *)_TIFFmalloc(4*stripsize); |
|
if (buf == 0) { |
|
TIFFError(TIFFFileName(tif), "No space for tile buffer"); |
|
return (0); |
|
} |
|
_TIFFmemset(buf, 0, 4*stripsize); |
|
g = r + stripsize; |
|
b = g + stripsize; |
|
a = b + stripsize; |
|
if (!alpha) |
|
_TIFFmemset(a, 0xff, stripsize); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) { |
|
y = h - 1; |
|
toskew = -(int32)(w + w); |
|
} |
|
else { |
|
y = 0; |
|
toskew = -(int32)(w - w); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
|
scanline = TIFFScanlineSize(tif); |
|
fromskew = (w < imagewidth ? imagewidth - w : 0); |
|
for (row = 0; row < h; row += nrow) |
|
{ |
|
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
offset_row = row + img->row_offset; |
|
if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), |
|
r, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 |
|
&& img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), |
|
g, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 |
|
&& img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), |
|
b, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 |
|
&& img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (alpha && |
|
(TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 3), |
|
a, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 |
|
&& img->stoponerr)) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
pos = ((row + img->row_offset) % rowsperstrip) * scanline; |
|
(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r + pos, g + pos, |
|
b + pos, a + pos); |
|
y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); |
|
} |
|
|
|
if (flip & FLIP_HORIZONTALLY) { |
|
uint32 line; |
|
|
|
for (line = 0; line < h; line++) { |
|
uint32 *left = raster + (line * w); |
|
uint32 *right = left + w - 1; |
|
|
|
while ( left < right ) { |
|
uint32 temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++, right--; |
|
} |
|
} |
|
} |
|
|
|
_TIFFfree(buf); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* The following routines move decoded data returned |
|
* from the TIFF library into rasters filled with packed |
|
* ABGR pixels (i.e. suitable for passing to lrecwrite.) |
|
* |
|
* The routines have been created according to the most |
|
* important cases and optimized. pickTileContigCase and |
|
* pickTileSeparateCase analyze the parameters and select |
|
* the appropriate "put" routine to use. |
|
*/ |
|
#define REPEAT8(op) REPEAT4(op); REPEAT4(op) |
|
#define REPEAT4(op) REPEAT2(op); REPEAT2(op) |
|
#define REPEAT2(op) op; op |
|
#define CASE8(x,op) \ |
|
switch (x) { \ |
|
case 7: op; case 6: op; case 5: op; \ |
|
case 4: op; case 3: op; case 2: op; \ |
|
case 1: op; \ |
|
} |
|
#define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } |
|
#define NOP |
|
|
|
#define UNROLL8(w, op1, op2) { \ |
|
uint32 _x; \ |
|
for (_x = w; _x >= 8; _x -= 8) { \ |
|
op1; \ |
|
REPEAT8(op2); \ |
|
} \ |
|
if (_x > 0) { \ |
|
op1; \ |
|
CASE8(_x,op2); \ |
|
} \ |
|
} |
|
#define UNROLL4(w, op1, op2) { \ |
|
uint32 _x; \ |
|
for (_x = w; _x >= 4; _x -= 4) { \ |
|
op1; \ |
|
REPEAT4(op2); \ |
|
} \ |
|
if (_x > 0) { \ |
|
op1; \ |
|
CASE4(_x,op2); \ |
|
} \ |
|
} |
|
#define UNROLL2(w, op1, op2) { \ |
|
uint32 _x; \ |
|
for (_x = w; _x >= 2; _x -= 2) { \ |
|
op1; \ |
|
REPEAT2(op2); \ |
|
} \ |
|
if (_x) { \ |
|
op1; \ |
|
op2; \ |
|
} \ |
|
} |
|
|
|
#define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } |
|
#define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } |
|
|
|
#define A1 (((uint32)0xffL)<<24) |
|
#define PACK(r,g,b) \ |
|
((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) |
|
#define PACK4(r,g,b,a) \ |
|
((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) |
|
#define W2B(v) (((v)>>8)&0xff) |
|
#define PACKW(r,g,b) \ |
|
((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) |
|
#define PACKW4(r,g,b,a) \ |
|
((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) |
|
|
|
#define DECLAREContigPutFunc(name) \ |
|
static void name(\ |
|
TIFFRGBAImage* img, \ |
|
uint32* cp, \ |
|
uint32 x, uint32 y, \ |
|
uint32 w, uint32 h, \ |
|
int32 fromskew, int32 toskew, \ |
|
unsigned char* pp \ |
|
) |
|
|
|
/* |
|
* 8-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put8bitcmaptile) |
|
{ |
|
uint32** PALmap = img->PALmap; |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void) y; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) |
|
{ |
|
*cp++ = PALmap[*pp][0]; |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 4-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put4bitcmaptile) |
|
{ |
|
uint32** PALmap = img->PALmap; |
|
|
|
(void) x; (void) y; |
|
fromskew /= 2; |
|
while (h-- > 0) { |
|
uint32* bw; |
|
UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 2-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put2bitcmaptile) |
|
{ |
|
uint32** PALmap = img->PALmap; |
|
|
|
(void) x; (void) y; |
|
fromskew /= 4; |
|
while (h-- > 0) { |
|
uint32* bw; |
|
UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 1-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put1bitcmaptile) |
|
{ |
|
uint32** PALmap = img->PALmap; |
|
|
|
(void) x; (void) y; |
|
fromskew /= 8; |
|
while (h-- > 0) { |
|
uint32* bw; |
|
UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(putgreytile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint32** BWmap = img->BWmap; |
|
|
|
(void) y; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) |
|
{ |
|
*cp++ = BWmap[*pp][0]; |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put16bitbwtile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint32** BWmap = img->BWmap; |
|
|
|
(void) y; |
|
while (h-- > 0) { |
|
uint16 *wp = (uint16 *) pp; |
|
|
|
for (x = w; x-- > 0;) |
|
{ |
|
/* use high order byte of 16bit value */ |
|
|
|
*cp++ = BWmap[*wp >> 8][0]; |
|
pp += 2 * samplesperpixel; |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 1-bit bilevel => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put1bitbwtile) |
|
{ |
|
uint32** BWmap = img->BWmap; |
|
|
|
(void) x; (void) y; |
|
fromskew /= 8; |
|
while (h-- > 0) { |
|
uint32* bw; |
|
UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 2-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put2bitbwtile) |
|
{ |
|
uint32** BWmap = img->BWmap; |
|
|
|
(void) x; (void) y; |
|
fromskew /= 4; |
|
while (h-- > 0) { |
|
uint32* bw; |
|
UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 4-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put4bitbwtile) |
|
{ |
|
uint32** BWmap = img->BWmap; |
|
|
|
(void) x; (void) y; |
|
fromskew /= 2; |
|
while (h-- > 0) { |
|
uint32* bw; |
|
UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples, no Map => RGB |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void) x; (void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
UNROLL8(w, NOP, |
|
*cp++ = PACK(pp[0], pp[1], pp[2]); |
|
pp += samplesperpixel); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples, w/ Map => RGB |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bitMaptile) |
|
{ |
|
TIFFRGBValue* Map = img->Map; |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) { |
|
*cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]); |
|
pp += samplesperpixel; |
|
} |
|
pp += fromskew; |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples => RGBA w/ associated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBAAcontig8bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void) x; (void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
UNROLL8(w, NOP, |
|
*cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); |
|
pp += samplesperpixel); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples => RGBA w/ unassociated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBUAcontig8bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
uint32 r, g, b, a; |
|
for (x = w; x-- > 0;) { |
|
a = pp[3]; |
|
r = (pp[0] * a) / 255; |
|
g = (pp[1] * a) / 255; |
|
b = (pp[2] * a) / 255; |
|
*cp++ = PACK4(r,g,b,a); |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed samples => RGB |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig16bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16 *wp = (uint16 *)pp; |
|
|
|
(void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) { |
|
*cp++ = PACKW(wp[0], wp[1], wp[2]); |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed samples => RGBA w/ associated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBAAcontig16bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16 *wp = (uint16 *)pp; |
|
|
|
(void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) { |
|
*cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]); |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed samples => RGBA w/ unassociated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBUAcontig16bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16 *wp = (uint16 *)pp; |
|
|
|
(void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
uint32 r,g,b,a; |
|
/* |
|
* We shift alpha down four bits just in case unsigned |
|
* arithmetic doesn't handle the full range. |
|
* We still have plenty of accuracy, since the output is 8 bits. |
|
* So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) |
|
* Since we want r*a * 0xff for eight bit output, |
|
* we divide by (0xffff * 0xfff) / 0xff == 0x10eff. |
|
*/ |
|
for (x = w; x-- > 0;) { |
|
a = wp[3] >> 4; |
|
r = (wp[0] * a) / 0x10eff; |
|
g = (wp[1] * a) / 0x10eff; |
|
b = (wp[2] * a) / 0x10eff; |
|
*cp++ = PACK4(r,g,b,a); |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed CMYK samples w/o Map => RGB |
|
* |
|
* NB: The conversion of CMYK->RGB is *very* crude. |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16 r, g, b, k; |
|
|
|
(void) x; (void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
UNROLL8(w, NOP, |
|
k = 255 - pp[3]; |
|
r = (k*(255-pp[0]))/255; |
|
g = (k*(255-pp[1]))/255; |
|
b = (k*(255-pp[2]))/255; |
|
*cp++ = PACK(r, g, b); |
|
pp += samplesperpixel); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed CMYK samples w/Map => RGB |
|
* |
|
* NB: The conversion of CMYK->RGB is *very* crude. |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
TIFFRGBValue* Map = img->Map; |
|
uint16 r, g, b, k; |
|
|
|
(void) y; |
|
fromskew *= samplesperpixel; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) { |
|
k = 255 - pp[3]; |
|
r = (k*(255-pp[0]))/255; |
|
g = (k*(255-pp[1]))/255; |
|
b = (k*(255-pp[2]))/255; |
|
*cp++ = PACK(Map[r], Map[g], Map[b]); |
|
pp += samplesperpixel; |
|
} |
|
pp += fromskew; |
|
cp += toskew; |
|
} |
|
} |
|
|
|
#define DECLARESepPutFunc(name) \ |
|
static void name(\ |
|
TIFFRGBAImage* img,\ |
|
uint32* cp,\ |
|
uint32 x, uint32 y, \ |
|
uint32 w, uint32 h,\ |
|
int32 fromskew, int32 toskew,\ |
|
unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ |
|
) |
|
|
|
/* |
|
* 8-bit unpacked samples => RGB |
|
*/ |
|
DECLARESepPutFunc(putRGBseparate8bittile) |
|
{ |
|
(void) img; (void) x; (void) y; (void) a; |
|
while (h-- > 0) { |
|
UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); |
|
SKEW(r, g, b, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit unpacked samples => RGB |
|
*/ |
|
DECLARESepPutFunc(putRGBseparate8bitMaptile) |
|
{ |
|
TIFFRGBValue* Map = img->Map; |
|
|
|
(void) y; (void) a; |
|
while (h-- > 0) { |
|
for (x = w; x > 0; x--) |
|
*cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]); |
|
SKEW(r, g, b, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit unpacked samples => RGBA w/ associated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBAAseparate8bittile) |
|
{ |
|
(void) img; (void) x; (void) y; |
|
while (h-- > 0) { |
|
UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); |
|
SKEW4(r, g, b, a, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit unpacked samples => RGBA w/ unassociated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBUAseparate8bittile) |
|
{ |
|
(void) img; (void) y; |
|
while (h-- > 0) { |
|
uint32 rv, gv, bv, av; |
|
for (x = w; x-- > 0;) { |
|
av = *a++; |
|
rv = (*r++ * av) / 255; |
|
gv = (*g++ * av) / 255; |
|
bv = (*b++ * av) / 255; |
|
*cp++ = PACK4(rv,gv,bv,av); |
|
} |
|
SKEW4(r, g, b, a, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit unpacked samples => RGB |
|
*/ |
|
DECLARESepPutFunc(putRGBseparate16bittile) |
|
{ |
|
uint16 *wr = (uint16*) r; |
|
uint16 *wg = (uint16*) g; |
|
uint16 *wb = (uint16*) b; |
|
|
|
(void) img; (void) y; (void) a; |
|
while (h-- > 0) { |
|
for (x = 0; x < w; x++) |
|
*cp++ = PACKW(*wr++, *wg++, *wb++); |
|
SKEW(wr, wg, wb, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit unpacked samples => RGBA w/ associated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBAAseparate16bittile) |
|
{ |
|
uint16 *wr = (uint16*) r; |
|
uint16 *wg = (uint16*) g; |
|
uint16 *wb = (uint16*) b; |
|
uint16 *wa = (uint16*) a; |
|
|
|
(void) img; (void) y; |
|
while (h-- > 0) { |
|
for (x = 0; x < w; x++) |
|
*cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++); |
|
SKEW4(wr, wg, wb, wa, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit unpacked samples => RGBA w/ unassociated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBUAseparate16bittile) |
|
{ |
|
uint16 *wr = (uint16*) r; |
|
uint16 *wg = (uint16*) g; |
|
uint16 *wb = (uint16*) b; |
|
uint16 *wa = (uint16*) a; |
|
|
|
(void) img; (void) y; |
|
while (h-- > 0) { |
|
uint32 r,g,b,a; |
|
/* |
|
* We shift alpha down four bits just in case unsigned |
|
* arithmetic doesn't handle the full range. |
|
* We still have plenty of accuracy, since the output is 8 bits. |
|
* So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) |
|
* Since we want r*a * 0xff for eight bit output, |
|
* we divide by (0xffff * 0xfff) / 0xff == 0x10eff. |
|
*/ |
|
for (x = w; x-- > 0;) { |
|
a = *wa++ >> 4; |
|
r = (*wr++ * a) / 0x10eff; |
|
g = (*wg++ * a) / 0x10eff; |
|
b = (*wb++ * a) / 0x10eff; |
|
*cp++ = PACK4(r,g,b,a); |
|
} |
|
SKEW4(wr, wg, wb, wa, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed CIE L*a*b 1976 samples => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitCIELab) |
|
{ |
|
float X, Y, Z; |
|
uint32 r, g, b; |
|
(void) y; |
|
fromskew *= 3; |
|
while (h-- > 0) { |
|
for (x = w; x-- > 0;) { |
|
TIFFCIELabToXYZ(img->cielab, |
|
(unsigned char)pp[0], |
|
(signed char)pp[1], |
|
(signed char)pp[2], |
|
&X, &Y, &Z); |
|
TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); |
|
*cp++ = PACK(r, g, b); |
|
pp += 3; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* YCbCr -> RGB conversion and packing routines. |
|
*/ |
|
|
|
#define YCbCrtoRGB(dst, Y) { \ |
|
uint32 r, g, b; \ |
|
TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ |
|
dst = PACK(r, g, b); \ |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples => RGB |
|
* This function is generic for different sampling sizes, |
|
* and can handle blocks sizes that aren't multiples of the |
|
* sampling size. However, it is substantially less optimized |
|
* than the specific sampling cases. It is used as a fallback |
|
* for difficult blocks. |
|
*/ |
|
#ifdef notdef |
|
static void putcontig8bitYCbCrGenericTile( |
|
TIFFRGBAImage* img, |
|
uint32* cp, |
|
uint32 x, uint32 y, |
|
uint32 w, uint32 h, |
|
int32 fromskew, int32 toskew, |
|
unsigned char* pp, |
|
int h_group, |
|
int v_group ) |
|
|
|
{ |
|
uint32* cp1 = cp+w+toskew; |
|
uint32* cp2 = cp1+w+toskew; |
|
uint32* cp3 = cp2+w+toskew; |
|
int32 incr = 3*w+4*toskew; |
|
int32 Cb, Cr; |
|
int group_size = v_group * h_group + 2; |
|
|
|
(void) y; |
|
fromskew = (fromskew * group_size) / h_group; |
|
|
|
for( yy = 0; yy < h; yy++ ) |
|
{ |
|
unsigned char *pp_line; |
|
int y_line_group = yy / v_group; |
|
int y_remainder = yy - y_line_group * v_group; |
|
|
|
pp_line = pp + v_line_group * |
|
|
|
|
|
for( xx = 0; xx < w; xx++ ) |
|
{ |
|
Cb = pp |
|
} |
|
} |
|
for (; h >= 4; h -= 4) { |
|
x = w>>2; |
|
do { |
|
Cb = pp[16]; |
|
Cr = pp[17]; |
|
|
|
YCbCrtoRGB(cp [0], pp[ 0]); |
|
YCbCrtoRGB(cp [1], pp[ 1]); |
|
YCbCrtoRGB(cp [2], pp[ 2]); |
|
YCbCrtoRGB(cp [3], pp[ 3]); |
|
YCbCrtoRGB(cp1[0], pp[ 4]); |
|
YCbCrtoRGB(cp1[1], pp[ 5]); |
|
YCbCrtoRGB(cp1[2], pp[ 6]); |
|
YCbCrtoRGB(cp1[3], pp[ 7]); |
|
YCbCrtoRGB(cp2[0], pp[ 8]); |
|
YCbCrtoRGB(cp2[1], pp[ 9]); |
|
YCbCrtoRGB(cp2[2], pp[10]); |
|
YCbCrtoRGB(cp2[3], pp[11]); |
|
YCbCrtoRGB(cp3[0], pp[12]); |
|
YCbCrtoRGB(cp3[1], pp[13]); |
|
YCbCrtoRGB(cp3[2], pp[14]); |
|
YCbCrtoRGB(cp3[3], pp[15]); |
|
|
|
cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; |
|
pp += 18; |
|
} while (--x); |
|
cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
#endif |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr44tile) |
|
{ |
|
uint32* cp1 = cp+w+toskew; |
|
uint32* cp2 = cp1+w+toskew; |
|
uint32* cp3 = cp2+w+toskew; |
|
int32 incr = 3*w+4*toskew; |
|
|
|
(void) y; |
|
/* adjust fromskew */ |
|
fromskew = (fromskew * 18) / 4; |
|
if ((h & 3) == 0 && (w & 3) == 0) { |
|
for (; h >= 4; h -= 4) { |
|
x = w>>2; |
|
do { |
|
int32 Cb = pp[16]; |
|
int32 Cr = pp[17]; |
|
|
|
YCbCrtoRGB(cp [0], pp[ 0]); |
|
YCbCrtoRGB(cp [1], pp[ 1]); |
|
YCbCrtoRGB(cp [2], pp[ 2]); |
|
YCbCrtoRGB(cp [3], pp[ 3]); |
|
YCbCrtoRGB(cp1[0], pp[ 4]); |
|
YCbCrtoRGB(cp1[1], pp[ 5]); |
|
YCbCrtoRGB(cp1[2], pp[ 6]); |
|
YCbCrtoRGB(cp1[3], pp[ 7]); |
|
YCbCrtoRGB(cp2[0], pp[ 8]); |
|
YCbCrtoRGB(cp2[1], pp[ 9]); |
|
YCbCrtoRGB(cp2[2], pp[10]); |
|
YCbCrtoRGB(cp2[3], pp[11]); |
|
YCbCrtoRGB(cp3[0], pp[12]); |
|
YCbCrtoRGB(cp3[1], pp[13]); |
|
YCbCrtoRGB(cp3[2], pp[14]); |
|
YCbCrtoRGB(cp3[3], pp[15]); |
|
|
|
cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; |
|
pp += 18; |
|
} while (--x); |
|
cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; |
|
pp += fromskew; |
|
} |
|
} else { |
|
while (h > 0) { |
|
for (x = w; x > 0;) { |
|
int32 Cb = pp[16]; |
|
int32 Cr = pp[17]; |
|
switch (x) { |
|
default: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ |
|
case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ |
|
case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 3: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ |
|
case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ |
|
case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 2: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ |
|
case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ |
|
case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 1: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ |
|
case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ |
|
case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
} |
|
if (x < 4) { |
|
cp += x; cp1 += x; cp2 += x; cp3 += x; |
|
x = 0; |
|
} |
|
else { |
|
cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; |
|
x -= 4; |
|
} |
|
pp += 18; |
|
} |
|
if (h <= 4) |
|
break; |
|
h -= 4; |
|
cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr42tile) |
|
{ |
|
uint32* cp1 = cp+w+toskew; |
|
int32 incr = 2*toskew+w; |
|
|
|
(void) y; |
|
fromskew = (fromskew * 10) / 4; |
|
if ((h & 3) == 0 && (w & 1) == 0) { |
|
for (; h >= 2; h -= 2) { |
|
x = w>>2; |
|
do { |
|
int32 Cb = pp[8]; |
|
int32 Cr = pp[9]; |
|
|
|
YCbCrtoRGB(cp [0], pp[0]); |
|
YCbCrtoRGB(cp [1], pp[1]); |
|
YCbCrtoRGB(cp [2], pp[2]); |
|
YCbCrtoRGB(cp [3], pp[3]); |
|
YCbCrtoRGB(cp1[0], pp[4]); |
|
YCbCrtoRGB(cp1[1], pp[5]); |
|
YCbCrtoRGB(cp1[2], pp[6]); |
|
YCbCrtoRGB(cp1[3], pp[7]); |
|
|
|
cp += 4, cp1 += 4; |
|
pp += 10; |
|
} while (--x); |
|
cp += incr, cp1 += incr; |
|
pp += fromskew; |
|
} |
|
} else { |
|
while (h > 0) { |
|
for (x = w; x > 0;) { |
|
int32 Cb = pp[8]; |
|
int32 Cr = pp[9]; |
|
switch (x) { |
|
default: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 3: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 2: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 1: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
} |
|
if (x < 4) { |
|
cp += x; cp1 += x; |
|
x = 0; |
|
} |
|
else { |
|
cp += 4; cp1 += 4; |
|
x -= 4; |
|
} |
|
pp += 10; |
|
} |
|
if (h <= 2) |
|
break; |
|
h -= 2; |
|
cp += incr, cp1 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr41tile) |
|
{ |
|
(void) y; |
|
/* XXX adjust fromskew */ |
|
do { |
|
x = w>>2; |
|
do { |
|
int32 Cb = pp[4]; |
|
int32 Cr = pp[5]; |
|
|
|
YCbCrtoRGB(cp [0], pp[0]); |
|
YCbCrtoRGB(cp [1], pp[1]); |
|
YCbCrtoRGB(cp [2], pp[2]); |
|
YCbCrtoRGB(cp [3], pp[3]); |
|
|
|
cp += 4; |
|
pp += 6; |
|
} while (--x); |
|
|
|
if( (w&3) != 0 ) |
|
{ |
|
int32 Cb = pp[4]; |
|
int32 Cr = pp[5]; |
|
|
|
switch( (w&3) ) { |
|
case 3: YCbCrtoRGB(cp [2], pp[2]); |
|
case 2: YCbCrtoRGB(cp [1], pp[1]); |
|
case 1: YCbCrtoRGB(cp [0], pp[0]); |
|
case 0: break; |
|
} |
|
|
|
cp += (w&3); |
|
pp += 6; |
|
} |
|
|
|
cp += toskew; |
|
pp += fromskew; |
|
} while (--h); |
|
|
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr22tile) |
|
{ |
|
uint32* cp1 = cp+w+toskew; |
|
int32 incr = 2*toskew+w; |
|
|
|
(void) y; |
|
fromskew = (fromskew * 6) / 2; |
|
if ((h & 1) == 0 && (w & 1) == 0) { |
|
for (; h >= 2; h -= 2) { |
|
x = w>>1; |
|
do { |
|
int32 Cb = pp[4]; |
|
int32 Cr = pp[5]; |
|
|
|
YCbCrtoRGB(cp [0], pp[0]); |
|
YCbCrtoRGB(cp [1], pp[1]); |
|
YCbCrtoRGB(cp1[0], pp[2]); |
|
YCbCrtoRGB(cp1[1], pp[3]); |
|
|
|
cp += 2, cp1 += 2; |
|
pp += 6; |
|
} while (--x); |
|
cp += incr, cp1 += incr; |
|
pp += fromskew; |
|
} |
|
} else { |
|
while (h > 0) { |
|
for (x = w; x > 0;) { |
|
int32 Cb = pp[4]; |
|
int32 Cr = pp[5]; |
|
switch (x) { |
|
default: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp1[1], pp[ 3]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 1: |
|
switch (h) { |
|
default: YCbCrtoRGB(cp1[0], pp[ 2]); /* FALLTHROUGH */ |
|
case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
} |
|
if (x < 2) { |
|
cp += x; cp1 += x; |
|
x = 0; |
|
} |
|
else { |
|
cp += 2; cp1 += 2; |
|
x -= 2; |
|
} |
|
pp += 6; |
|
} |
|
if (h <= 2) |
|
break; |
|
h -= 2; |
|
cp += incr, cp1 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr21tile) |
|
{ |
|
(void) y; |
|
fromskew = (fromskew * 4) / 2; |
|
do { |
|
x = w>>1; |
|
do { |
|
int32 Cb = pp[2]; |
|
int32 Cr = pp[3]; |
|
|
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
|
|
cp += 2; |
|
pp += 4; |
|
} while (--x); |
|
|
|
if( (w&1) != 0 ) |
|
{ |
|
int32 Cb = pp[2]; |
|
int32 Cr = pp[3]; |
|
|
|
YCbCrtoRGB(cp [0], pp[0]); |
|
|
|
cp += 1; |
|
pp += 4; |
|
} |
|
|
|
cp += toskew; |
|
pp += fromskew; |
|
} while (--h); |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ no subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr11tile) |
|
{ |
|
(void) y; |
|
fromskew *= 3; |
|
do { |
|
x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ |
|
do { |
|
int32 Cb = pp[1]; |
|
int32 Cr = pp[2]; |
|
|
|
YCbCrtoRGB(*cp++, pp[0]); |
|
|
|
pp += 3; |
|
} while (--x); |
|
cp += toskew; |
|
pp += fromskew; |
|
} while (--h); |
|
} |
|
#undef YCbCrtoRGB |
|
|
|
static tileContigRoutine |
|
initYCbCrConversion(TIFFRGBAImage* img) |
|
{ |
|
static char module[] = "initCIELabConversion"; |
|
|
|
float *luma, *refBlackWhite; |
|
uint16 hs, vs; |
|
|
|
if (img->ycbcr == NULL) { |
|
img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( |
|
TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)) |
|
+ 4*256*sizeof (TIFFRGBValue) |
|
+ 2*256*sizeof (int) |
|
+ 3*256*sizeof (int32) |
|
); |
|
if (img->ycbcr == NULL) { |
|
TIFFError(module, |
|
"No space for YCbCr->RGB conversion state"); |
|
return (NULL); |
|
} |
|
} |
|
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); |
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, |
|
&refBlackWhite); |
|
if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) |
|
return NULL; |
|
|
|
/* |
|
* The 6.0 spec says that subsampling must be |
|
* one of 1, 2, or 4, and that vertical subsampling |
|
* must always be <= horizontal subsampling; so |
|
* there are only a few possibilities and we just |
|
* enumerate the cases. |
|
*/ |
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); |
|
switch ((hs<<4)|vs) { |
|
case 0x44: return (tileContigRoutine)(putcontig8bitYCbCr44tile); |
|
case 0x42: return (tileContigRoutine)(putcontig8bitYCbCr42tile); |
|
case 0x41: return (tileContigRoutine)(putcontig8bitYCbCr41tile); |
|
case 0x22: return (tileContigRoutine)(putcontig8bitYCbCr22tile); |
|
case 0x21: return (tileContigRoutine)(putcontig8bitYCbCr21tile); |
|
case 0x11: return (tileContigRoutine)(putcontig8bitYCbCr11tile); |
|
} |
|
|
|
return (NULL); |
|
} |
|
|
|
static tileContigRoutine |
|
initCIELabConversion(TIFFRGBAImage* img) |
|
{ |
|
static char module[] = "initCIELabConversion"; |
|
|
|
float *whitePoint; |
|
float refWhite[3]; |
|
|
|
if (!img->cielab) { |
|
img->cielab = (TIFFCIELabToRGB *) |
|
_TIFFmalloc(sizeof(TIFFCIELabToRGB)); |
|
if (!img->cielab) { |
|
TIFFError(module, |
|
"No space for CIE L*a*b*->RGB conversion state."); |
|
return NULL; |
|
} |
|
} |
|
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); |
|
refWhite[1] = 100.0F; |
|
refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; |
|
refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) |
|
/ whitePoint[1] * refWhite[1]; |
|
if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { |
|
TIFFError(module, |
|
"Failed to initialize CIE L*a*b*->RGB conversion state."); |
|
_TIFFfree(img->cielab); |
|
return NULL; |
|
} |
|
|
|
return (tileContigRoutine)putcontig8bitCIELab; |
|
} |
|
|
|
/* |
|
* Greyscale images with less than 8 bits/sample are handled |
|
* with a table to avoid lots of shifts and masks. The table |
|
* is setup so that put*bwtile (below) can retrieve 8/bitspersample |
|
* pixel values simply by indexing into the table with one |
|
* number. |
|
*/ |
|
static int |
|
makebwmap(TIFFRGBAImage* img) |
|
{ |
|
TIFFRGBValue* Map = img->Map; |
|
int bitspersample = img->bitspersample; |
|
int nsamples = 8 / bitspersample; |
|
int i; |
|
uint32* p; |
|
|
|
if( nsamples == 0 ) |
|
nsamples = 1; |
|
|
|
img->BWmap = (uint32**) _TIFFmalloc( |
|
256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); |
|
if (img->BWmap == NULL) { |
|
TIFFError(TIFFFileName(img->tif), "No space for B&W mapping table"); |
|
return (0); |
|
} |
|
p = (uint32*)(img->BWmap + 256); |
|
for (i = 0; i < 256; i++) { |
|
TIFFRGBValue c; |
|
img->BWmap[i] = p; |
|
switch (bitspersample) { |
|
#define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); |
|
case 1: |
|
GREY(i>>7); |
|
GREY((i>>6)&1); |
|
GREY((i>>5)&1); |
|
GREY((i>>4)&1); |
|
GREY((i>>3)&1); |
|
GREY((i>>2)&1); |
|
GREY((i>>1)&1); |
|
GREY(i&1); |
|
break; |
|
case 2: |
|
GREY(i>>6); |
|
GREY((i>>4)&3); |
|
GREY((i>>2)&3); |
|
GREY(i&3); |
|
break; |
|
case 4: |
|
GREY(i>>4); |
|
GREY(i&0xf); |
|
break; |
|
case 8: |
|
case 16: |
|
GREY(i); |
|
break; |
|
} |
|
#undef GREY |
|
} |
|
return (1); |
|
} |
|
|
|
/* |
|
* Construct a mapping table to convert from the range |
|
* of the data samples to [0,255] --for display. This |
|
* process also handles inverting B&W images when needed. |
|
*/ |
|
static int |
|
setupMap(TIFFRGBAImage* img) |
|
{ |
|
int32 x, range; |
|
|
|
range = (int32)((1L<<img->bitspersample)-1); |
|
|
|
/* treat 16 bit the same as eight bit */ |
|
if( img->bitspersample == 16 ) |
|
range = (int32) 255; |
|
|
|
img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); |
|
if (img->Map == NULL) { |
|
TIFFError(TIFFFileName(img->tif), |
|
"No space for photometric conversion table"); |
|
return (0); |
|
} |
|
if (img->photometric == PHOTOMETRIC_MINISWHITE) { |
|
for (x = 0; x <= range; x++) |
|
img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); |
|
} else { |
|
for (x = 0; x <= range; x++) |
|
img->Map[x] = (TIFFRGBValue) ((x * 255) / range); |
|
} |
|
if (img->bitspersample <= 16 && |
|
(img->photometric == PHOTOMETRIC_MINISBLACK || |
|
img->photometric == PHOTOMETRIC_MINISWHITE)) { |
|
/* |
|
* Use photometric mapping table to construct |
|
* unpacking tables for samples <= 8 bits. |
|
*/ |
|
if (!makebwmap(img)) |
|
return (0); |
|
/* no longer need Map, free it */ |
|
_TIFFfree(img->Map), img->Map = NULL; |
|
} |
|
return (1); |
|
} |
|
|
|
static int |
|
checkcmap(TIFFRGBAImage* img) |
|
{ |
|
uint16* r = img->redcmap; |
|
uint16* g = img->greencmap; |
|
uint16* b = img->bluecmap; |
|
long n = 1L<<img->bitspersample; |
|
|
|
while (n-- > 0) |
|
if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) |
|
return (16); |
|
return (8); |
|
} |
|
|
|
static void |
|
cvtcmap(TIFFRGBAImage* img) |
|
{ |
|
uint16* r = img->redcmap; |
|
uint16* g = img->greencmap; |
|
uint16* b = img->bluecmap; |
|
long i; |
|
|
|
for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { |
|
#define CVT(x) ((uint16)((x)>>8)) |
|
r[i] = CVT(r[i]); |
|
g[i] = CVT(g[i]); |
|
b[i] = CVT(b[i]); |
|
#undef CVT |
|
} |
|
} |
|
|
|
/* |
|
* Palette images with <= 8 bits/sample are handled |
|
* with a table to avoid lots of shifts and masks. The table |
|
* is setup so that put*cmaptile (below) can retrieve 8/bitspersample |
|
* pixel values simply by indexing into the table with one |
|
* number. |
|
*/ |
|
static int |
|
makecmap(TIFFRGBAImage* img) |
|
{ |
|
int bitspersample = img->bitspersample; |
|
int nsamples = 8 / bitspersample; |
|
uint16* r = img->redcmap; |
|
uint16* g = img->greencmap; |
|
uint16* b = img->bluecmap; |
|
uint32 *p; |
|
int i; |
|
|
|
img->PALmap = (uint32**) _TIFFmalloc( |
|
256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); |
|
if (img->PALmap == NULL) { |
|
TIFFError(TIFFFileName(img->tif), "No space for Palette mapping table"); |
|
return (0); |
|
} |
|
p = (uint32*)(img->PALmap + 256); |
|
for (i = 0; i < 256; i++) { |
|
TIFFRGBValue c; |
|
img->PALmap[i] = p; |
|
#define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); |
|
switch (bitspersample) { |
|
case 1: |
|
CMAP(i>>7); |
|
CMAP((i>>6)&1); |
|
CMAP((i>>5)&1); |
|
CMAP((i>>4)&1); |
|
CMAP((i>>3)&1); |
|
CMAP((i>>2)&1); |
|
CMAP((i>>1)&1); |
|
CMAP(i&1); |
|
break; |
|
case 2: |
|
CMAP(i>>6); |
|
CMAP((i>>4)&3); |
|
CMAP((i>>2)&3); |
|
CMAP(i&3); |
|
break; |
|
case 4: |
|
CMAP(i>>4); |
|
CMAP(i&0xf); |
|
break; |
|
case 8: |
|
CMAP(i); |
|
break; |
|
} |
|
#undef CMAP |
|
} |
|
return (1); |
|
} |
|
|
|
/* |
|
* Construct any mapping table used |
|
* by the associated put routine. |
|
*/ |
|
static int |
|
buildMap(TIFFRGBAImage* img) |
|
{ |
|
switch (img->photometric) { |
|
case PHOTOMETRIC_RGB: |
|
case PHOTOMETRIC_YCBCR: |
|
case PHOTOMETRIC_SEPARATED: |
|
if (img->bitspersample == 8) |
|
break; |
|
/* fall thru... */ |
|
case PHOTOMETRIC_MINISBLACK: |
|
case PHOTOMETRIC_MINISWHITE: |
|
if (!setupMap(img)) |
|
return (0); |
|
break; |
|
case PHOTOMETRIC_PALETTE: |
|
/* |
|
* Convert 16-bit colormap to 8-bit (unless it looks |
|
* like an old-style 8-bit colormap). |
|
*/ |
|
if (checkcmap(img) == 16) |
|
cvtcmap(img); |
|
else |
|
TIFFWarning(TIFFFileName(img->tif), "Assuming 8-bit colormap"); |
|
/* |
|
* Use mapping table and colormap to construct |
|
* unpacking tables for samples < 8 bits. |
|
*/ |
|
if (img->bitspersample <= 8 && !makecmap(img)) |
|
return (0); |
|
break; |
|
} |
|
return (1); |
|
} |
|
|
|
/* |
|
* Select the appropriate conversion routine for packed data. |
|
*/ |
|
static int |
|
pickTileContigCase(TIFFRGBAImage* img) |
|
{ |
|
tileContigRoutine put = 0; |
|
|
|
if (buildMap(img)) { |
|
switch (img->photometric) { |
|
case PHOTOMETRIC_RGB: |
|
switch (img->bitspersample) { |
|
case 8: |
|
if (!img->Map) { |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
|
put = putRGBAAcontig8bittile; |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
|
put = putRGBUAcontig8bittile; |
|
else |
|
put = putRGBcontig8bittile; |
|
} else |
|
put = putRGBcontig8bitMaptile; |
|
break; |
|
case 16: |
|
put = putRGBcontig16bittile; |
|
if (!img->Map) { |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
|
put = putRGBAAcontig16bittile; |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
|
put = putRGBUAcontig16bittile; |
|
} |
|
break; |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: |
|
if (img->bitspersample == 8) { |
|
if (!img->Map) |
|
put = putRGBcontig8bitCMYKtile; |
|
else |
|
put = putRGBcontig8bitCMYKMaptile; |
|
} |
|
break; |
|
case PHOTOMETRIC_PALETTE: |
|
switch (img->bitspersample) { |
|
case 8: put = put8bitcmaptile; break; |
|
case 4: put = put4bitcmaptile; break; |
|
case 2: put = put2bitcmaptile; break; |
|
case 1: put = put1bitcmaptile; break; |
|
} |
|
break; |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
switch (img->bitspersample) { |
|
case 16: put = put16bitbwtile; break; |
|
case 8: put = putgreytile; break; |
|
case 4: put = put4bitbwtile; break; |
|
case 2: put = put2bitbwtile; break; |
|
case 1: put = put1bitbwtile; break; |
|
} |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
if (img->bitspersample == 8) |
|
put = initYCbCrConversion(img); |
|
break; |
|
case PHOTOMETRIC_CIELAB: |
|
if (img->bitspersample == 8) |
|
put = initCIELabConversion(img); |
|
break; |
|
} |
|
} |
|
return ((img->put.contig = put) != 0); |
|
} |
|
|
|
/* |
|
* Select the appropriate conversion routine for unpacked data. |
|
* |
|
* NB: we assume that unpacked single channel data is directed |
|
* to the "packed routines. |
|
*/ |
|
static int |
|
pickTileSeparateCase(TIFFRGBAImage* img) |
|
{ |
|
tileSeparateRoutine put = 0; |
|
|
|
if (buildMap(img)) { |
|
switch (img->photometric) { |
|
case PHOTOMETRIC_RGB: |
|
switch (img->bitspersample) { |
|
case 8: |
|
if (!img->Map) { |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
|
put = putRGBAAseparate8bittile; |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
|
put = putRGBUAseparate8bittile; |
|
else |
|
put = putRGBseparate8bittile; |
|
} else |
|
put = putRGBseparate8bitMaptile; |
|
break; |
|
case 16: |
|
put = putRGBseparate16bittile; |
|
if (!img->Map) { |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
|
put = putRGBAAseparate16bittile; |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
|
put = putRGBUAseparate16bittile; |
|
} |
|
break; |
|
} |
|
break; |
|
} |
|
} |
|
return ((img->put.separate = put) != 0); |
|
} |
|
|
|
/* |
|
* Read a whole strip off data from the file, and convert to RGBA form. |
|
* If this is the last strip, then it will only contain the portion of |
|
* the strip that is actually within the image space. The result is |
|
* organized in bottom to top form. |
|
*/ |
|
|
|
|
|
int |
|
TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) |
|
|
|
{ |
|
char emsg[1024] = ""; |
|
TIFFRGBAImage img; |
|
int ok; |
|
uint32 rowsperstrip, rows_to_read; |
|
|
|
if( TIFFIsTiled( tif ) ) |
|
{ |
|
TIFFError(TIFFFileName(tif), |
|
"Can't use TIFFReadRGBAStrip() with tiled file."); |
|
return (0); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
|
if( (row % rowsperstrip) != 0 ) |
|
{ |
|
TIFFError(TIFFFileName(tif), |
|
"Row passed to TIFFReadRGBAStrip() must be first in a strip."); |
|
return (0); |
|
} |
|
|
|
if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { |
|
|
|
img.row_offset = row; |
|
img.col_offset = 0; |
|
|
|
if( row + rowsperstrip > img.height ) |
|
rows_to_read = img.height - row; |
|
else |
|
rows_to_read = rowsperstrip; |
|
|
|
ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); |
|
|
|
TIFFRGBAImageEnd(&img); |
|
} else { |
|
TIFFError(TIFFFileName(tif), emsg); |
|
ok = 0; |
|
} |
|
|
|
return (ok); |
|
} |
|
|
|
/* |
|
* Read a whole tile off data from the file, and convert to RGBA form. |
|
* The returned RGBA data is organized from bottom to top of tile, |
|
* and may include zeroed areas if the tile extends off the image. |
|
*/ |
|
|
|
int |
|
TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) |
|
|
|
{ |
|
char emsg[1024] = ""; |
|
TIFFRGBAImage img; |
|
int ok; |
|
uint32 tile_xsize, tile_ysize; |
|
uint32 read_xsize, read_ysize; |
|
uint32 i_row; |
|
|
|
/* |
|
* Verify that our request is legal - on a tile file, and on a |
|
* tile boundary. |
|
*/ |
|
|
|
if( !TIFFIsTiled( tif ) ) |
|
{ |
|
TIFFError(TIFFFileName(tif), |
|
"Can't use TIFFReadRGBATile() with stripped file."); |
|
return (0); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); |
|
if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) |
|
{ |
|
TIFFError(TIFFFileName(tif), |
|
"Row/col passed to TIFFReadRGBATile() must be top" |
|
"left corner of a tile."); |
|
return (0); |
|
} |
|
|
|
/* |
|
* Setup the RGBA reader. |
|
*/ |
|
|
|
if (!TIFFRGBAImageOK(tif, emsg) |
|
|| !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { |
|
TIFFError(TIFFFileName(tif), emsg); |
|
return( 0 ); |
|
} |
|
|
|
/* |
|
* The TIFFRGBAImageGet() function doesn't allow us to get off the |
|
* edge of the image, even to fill an otherwise valid tile. So we |
|
* figure out how much we can read, and fix up the tile buffer to |
|
* a full tile configuration afterwards. |
|
*/ |
|
|
|
if( row + tile_ysize > img.height ) |
|
read_ysize = img.height - row; |
|
else |
|
read_ysize = tile_ysize; |
|
|
|
if( col + tile_xsize > img.width ) |
|
read_xsize = img.width - col; |
|
else |
|
read_xsize = tile_xsize; |
|
|
|
/* |
|
* Read the chunk of imagery. |
|
*/ |
|
|
|
img.row_offset = row; |
|
img.col_offset = col; |
|
|
|
ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); |
|
|
|
TIFFRGBAImageEnd(&img); |
|
|
|
/* |
|
* If our read was incomplete we will need to fix up the tile by |
|
* shifting the data around as if a full tile of data is being returned. |
|
* |
|
* This is all the more complicated because the image is organized in |
|
* bottom to top format. |
|
*/ |
|
|
|
if( read_xsize == tile_xsize && read_ysize == tile_ysize ) |
|
return( ok ); |
|
|
|
for( i_row = 0; i_row < read_ysize; i_row++ ) { |
|
memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, |
|
raster + (read_ysize - i_row - 1) * read_xsize, |
|
read_xsize * sizeof(uint32) ); |
|
_TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, |
|
0, sizeof(uint32) * (tile_xsize - read_xsize) ); |
|
} |
|
|
|
for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { |
|
_TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, |
|
0, sizeof(uint32) * tile_xsize ); |
|
} |
|
|
|
return (ok); |
|
} |
|
|
|
/* vim: set ts=8 sts=8 sw=8 noet: */
|
|
|