mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
396 lines
11 KiB
396 lines
11 KiB
#include "clapack.h" |
|
|
|
/* Subroutine */ int ssyr2k_(char *uplo, char *trans, integer *n, integer *k, |
|
real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta, |
|
real *c__, integer *ldc) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, |
|
i__3; |
|
|
|
/* Local variables */ |
|
integer i__, j, l, info; |
|
real temp1, temp2; |
|
extern logical lsame_(char *, char *); |
|
integer nrowa; |
|
logical upper; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SSYR2K performs one of the symmetric rank 2k operations */ |
|
|
|
/* C := alpha*A*B' + alpha*B*A' + beta*C, */ |
|
|
|
/* or */ |
|
|
|
/* C := alpha*A'*B + alpha*B'*A + beta*C, */ |
|
|
|
/* where alpha and beta are scalars, C is an n by n symmetric matrix */ |
|
/* and A and B are n by k matrices in the first case and k by n */ |
|
/* matrices in the second case. */ |
|
|
|
/* Arguments */ |
|
/* ========== */ |
|
|
|
/* UPLO - CHARACTER*1. */ |
|
/* On entry, UPLO specifies whether the upper or lower */ |
|
/* triangular part of the array C is to be referenced as */ |
|
/* follows: */ |
|
|
|
/* UPLO = 'U' or 'u' Only the upper triangular part of C */ |
|
/* is to be referenced. */ |
|
|
|
/* UPLO = 'L' or 'l' Only the lower triangular part of C */ |
|
/* is to be referenced. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* TRANS - CHARACTER*1. */ |
|
/* On entry, TRANS specifies the operation to be performed as */ |
|
/* follows: */ |
|
|
|
/* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + */ |
|
/* beta*C. */ |
|
|
|
/* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + */ |
|
/* beta*C. */ |
|
|
|
/* TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + */ |
|
/* beta*C. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* N - INTEGER. */ |
|
/* On entry, N specifies the order of the matrix C. N must be */ |
|
/* at least zero. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* K - INTEGER. */ |
|
/* On entry with TRANS = 'N' or 'n', K specifies the number */ |
|
/* of columns of the matrices A and B, and on entry with */ |
|
/* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number */ |
|
/* of rows of the matrices A and B. K must be at least zero. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* ALPHA - REAL . */ |
|
/* On entry, ALPHA specifies the scalar alpha. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* A - REAL array of DIMENSION ( LDA, ka ), where ka is */ |
|
/* k when TRANS = 'N' or 'n', and is n otherwise. */ |
|
/* Before entry with TRANS = 'N' or 'n', the leading n by k */ |
|
/* part of the array A must contain the matrix A, otherwise */ |
|
/* the leading k by n part of the array A must contain the */ |
|
/* matrix A. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* LDA - INTEGER. */ |
|
/* On entry, LDA specifies the first dimension of A as declared */ |
|
/* in the calling (sub) program. When TRANS = 'N' or 'n' */ |
|
/* then LDA must be at least max( 1, n ), otherwise LDA must */ |
|
/* be at least max( 1, k ). */ |
|
/* Unchanged on exit. */ |
|
|
|
/* B - REAL array of DIMENSION ( LDB, kb ), where kb is */ |
|
/* k when TRANS = 'N' or 'n', and is n otherwise. */ |
|
/* Before entry with TRANS = 'N' or 'n', the leading n by k */ |
|
/* part of the array B must contain the matrix B, otherwise */ |
|
/* the leading k by n part of the array B must contain the */ |
|
/* matrix B. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* LDB - INTEGER. */ |
|
/* On entry, LDB specifies the first dimension of B as declared */ |
|
/* in the calling (sub) program. When TRANS = 'N' or 'n' */ |
|
/* then LDB must be at least max( 1, n ), otherwise LDB must */ |
|
/* be at least max( 1, k ). */ |
|
/* Unchanged on exit. */ |
|
|
|
/* BETA - REAL . */ |
|
/* On entry, BETA specifies the scalar beta. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* C - REAL array of DIMENSION ( LDC, n ). */ |
|
/* Before entry with UPLO = 'U' or 'u', the leading n by n */ |
|
/* upper triangular part of the array C must contain the upper */ |
|
/* triangular part of the symmetric matrix and the strictly */ |
|
/* lower triangular part of C is not referenced. On exit, the */ |
|
/* upper triangular part of the array C is overwritten by the */ |
|
/* upper triangular part of the updated matrix. */ |
|
/* Before entry with UPLO = 'L' or 'l', the leading n by n */ |
|
/* lower triangular part of the array C must contain the lower */ |
|
/* triangular part of the symmetric matrix and the strictly */ |
|
/* upper triangular part of C is not referenced. On exit, the */ |
|
/* lower triangular part of the array C is overwritten by the */ |
|
/* lower triangular part of the updated matrix. */ |
|
|
|
/* LDC - INTEGER. */ |
|
/* On entry, LDC specifies the first dimension of C as declared */ |
|
/* in the calling (sub) program. LDC must be at least */ |
|
/* max( 1, n ). */ |
|
/* Unchanged on exit. */ |
|
|
|
|
|
/* Level 3 Blas routine. */ |
|
|
|
|
|
/* -- Written on 8-February-1989. */ |
|
/* Jack Dongarra, Argonne National Laboratory. */ |
|
/* Iain Duff, AERE Harwell. */ |
|
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ |
|
/* Sven Hammarling, Numerical Algorithms Group Ltd. */ |
|
|
|
|
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Parameters .. */ |
|
/* .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
c_dim1 = *ldc; |
|
c_offset = 1 + c_dim1; |
|
c__ -= c_offset; |
|
|
|
/* Function Body */ |
|
if (lsame_(trans, "N")) { |
|
nrowa = *n; |
|
} else { |
|
nrowa = *k; |
|
} |
|
upper = lsame_(uplo, "U"); |
|
|
|
info = 0; |
|
if (! upper && ! lsame_(uplo, "L")) { |
|
info = 1; |
|
} else if (! lsame_(trans, "N") && ! lsame_(trans, |
|
"T") && ! lsame_(trans, "C")) { |
|
info = 2; |
|
} else if (*n < 0) { |
|
info = 3; |
|
} else if (*k < 0) { |
|
info = 4; |
|
} else if (*lda < max(1,nrowa)) { |
|
info = 7; |
|
} else if (*ldb < max(1,nrowa)) { |
|
info = 9; |
|
} else if (*ldc < max(1,*n)) { |
|
info = 12; |
|
} |
|
if (info != 0) { |
|
xerbla_("SSYR2K", &info); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible. */ |
|
|
|
if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) { |
|
return 0; |
|
} |
|
|
|
/* And when alpha.eq.zero. */ |
|
|
|
if (*alpha == 0.f) { |
|
if (upper) { |
|
if (*beta == 0.f) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = j; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = 0.f; |
|
/* L10: */ |
|
} |
|
/* L20: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = j; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; |
|
/* L30: */ |
|
} |
|
/* L40: */ |
|
} |
|
} |
|
} else { |
|
if (*beta == 0.f) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *n; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = 0.f; |
|
/* L50: */ |
|
} |
|
/* L60: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *n; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; |
|
/* L70: */ |
|
} |
|
/* L80: */ |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/* Start the operations. */ |
|
|
|
if (lsame_(trans, "N")) { |
|
|
|
/* Form C := alpha*A*B' + alpha*B*A' + C. */ |
|
|
|
if (upper) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (*beta == 0.f) { |
|
i__2 = j; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = 0.f; |
|
/* L90: */ |
|
} |
|
} else if (*beta != 1.f) { |
|
i__2 = j; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; |
|
/* L100: */ |
|
} |
|
} |
|
i__2 = *k; |
|
for (l = 1; l <= i__2; ++l) { |
|
if (a[j + l * a_dim1] != 0.f || b[j + l * b_dim1] != 0.f) |
|
{ |
|
temp1 = *alpha * b[j + l * b_dim1]; |
|
temp2 = *alpha * a[j + l * a_dim1]; |
|
i__3 = j; |
|
for (i__ = 1; i__ <= i__3; ++i__) { |
|
c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ |
|
i__ + l * a_dim1] * temp1 + b[i__ + l * |
|
b_dim1] * temp2; |
|
/* L110: */ |
|
} |
|
} |
|
/* L120: */ |
|
} |
|
/* L130: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (*beta == 0.f) { |
|
i__2 = *n; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = 0.f; |
|
/* L140: */ |
|
} |
|
} else if (*beta != 1.f) { |
|
i__2 = *n; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; |
|
/* L150: */ |
|
} |
|
} |
|
i__2 = *k; |
|
for (l = 1; l <= i__2; ++l) { |
|
if (a[j + l * a_dim1] != 0.f || b[j + l * b_dim1] != 0.f) |
|
{ |
|
temp1 = *alpha * b[j + l * b_dim1]; |
|
temp2 = *alpha * a[j + l * a_dim1]; |
|
i__3 = *n; |
|
for (i__ = j; i__ <= i__3; ++i__) { |
|
c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ |
|
i__ + l * a_dim1] * temp1 + b[i__ + l * |
|
b_dim1] * temp2; |
|
/* L160: */ |
|
} |
|
} |
|
/* L170: */ |
|
} |
|
/* L180: */ |
|
} |
|
} |
|
} else { |
|
|
|
/* Form C := alpha*A'*B + alpha*B'*A + C. */ |
|
|
|
if (upper) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = j; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
temp1 = 0.f; |
|
temp2 = 0.f; |
|
i__3 = *k; |
|
for (l = 1; l <= i__3; ++l) { |
|
temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; |
|
temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; |
|
/* L190: */ |
|
} |
|
if (*beta == 0.f) { |
|
c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * |
|
temp2; |
|
} else { |
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] |
|
+ *alpha * temp1 + *alpha * temp2; |
|
} |
|
/* L200: */ |
|
} |
|
/* L210: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *n; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
temp1 = 0.f; |
|
temp2 = 0.f; |
|
i__3 = *k; |
|
for (l = 1; l <= i__3; ++l) { |
|
temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; |
|
temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; |
|
/* L220: */ |
|
} |
|
if (*beta == 0.f) { |
|
c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * |
|
temp2; |
|
} else { |
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] |
|
+ *alpha * temp1 + *alpha * temp2; |
|
} |
|
/* L230: */ |
|
} |
|
/* L240: */ |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
|
|
/* End of SSYR2K. */ |
|
|
|
} /* ssyr2k_ */
|
|
|