mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
267 lines
7.1 KiB
267 lines
7.1 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c_n1 = -1; |
|
static integer c__3 = 3; |
|
static integer c__2 = 2; |
|
|
|
/* Subroutine */ int sorgqr_(integer *m, integer *n, integer *k, real *a, |
|
integer *lda, real *tau, real *work, integer *lwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2, i__3; |
|
|
|
/* Local variables */ |
|
integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo; |
|
extern /* Subroutine */ int sorg2r_(integer *, integer *, integer *, real |
|
*, integer *, real *, real *, integer *), slarfb_(char *, char *, |
|
char *, char *, integer *, integer *, integer *, real *, integer * |
|
, real *, integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
extern /* Subroutine */ int slarft_(char *, char *, integer *, integer *, |
|
real *, integer *, real *, real *, integer *); |
|
integer ldwork, lwkopt; |
|
logical lquery; |
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SORGQR generates an M-by-N real matrix Q with orthonormal columns, */ |
|
/* which is defined as the first N columns of a product of K elementary */ |
|
/* reflectors of order M */ |
|
|
|
/* Q = H(1) H(2) . . . H(k) */ |
|
|
|
/* as returned by SGEQRF. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix Q. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix Q. M >= N >= 0. */ |
|
|
|
/* K (input) INTEGER */ |
|
/* The number of elementary reflectors whose product defines the */ |
|
/* matrix Q. N >= K >= 0. */ |
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */ |
|
/* On entry, the i-th column must contain the vector which */ |
|
/* defines the elementary reflector H(i), for i = 1,2,...,k, as */ |
|
/* returned by SGEQRF in the first k columns of its array */ |
|
/* argument A. */ |
|
/* On exit, the M-by-N matrix Q. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The first dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* TAU (input) REAL array, dimension (K) */ |
|
/* TAU(i) must contain the scalar factor of the elementary */ |
|
/* reflector H(i), as returned by SGEQRF. */ |
|
|
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. LWORK >= max(1,N). */ |
|
/* For optimum performance LWORK >= N*NB, where NB is the */ |
|
/* optimal blocksize. */ |
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */ |
|
/* only calculates the optimal size of the WORK array, returns */ |
|
/* this value as the first entry of the WORK array, and no error */ |
|
/* message related to LWORK is issued by XERBLA. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument has an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--tau; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
nb = ilaenv_(&c__1, "SORGQR", " ", m, n, k, &c_n1); |
|
lwkopt = max(1,*n) * nb; |
|
work[1] = (real) lwkopt; |
|
lquery = *lwork == -1; |
|
if (*m < 0) { |
|
*info = -1; |
|
} else if (*n < 0 || *n > *m) { |
|
*info = -2; |
|
} else if (*k < 0 || *k > *n) { |
|
*info = -3; |
|
} else if (*lda < max(1,*m)) { |
|
*info = -5; |
|
} else if (*lwork < max(1,*n) && ! lquery) { |
|
*info = -8; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SORGQR", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n <= 0) { |
|
work[1] = 1.f; |
|
return 0; |
|
} |
|
|
|
nbmin = 2; |
|
nx = 0; |
|
iws = *n; |
|
if (nb > 1 && nb < *k) { |
|
|
|
/* Determine when to cross over from blocked to unblocked code. */ |
|
|
|
/* Computing MAX */ |
|
i__1 = 0, i__2 = ilaenv_(&c__3, "SORGQR", " ", m, n, k, &c_n1); |
|
nx = max(i__1,i__2); |
|
if (nx < *k) { |
|
|
|
/* Determine if workspace is large enough for blocked code. */ |
|
|
|
ldwork = *n; |
|
iws = ldwork * nb; |
|
if (*lwork < iws) { |
|
|
|
/* Not enough workspace to use optimal NB: reduce NB and */ |
|
/* determine the minimum value of NB. */ |
|
|
|
nb = *lwork / ldwork; |
|
/* Computing MAX */ |
|
i__1 = 2, i__2 = ilaenv_(&c__2, "SORGQR", " ", m, n, k, &c_n1); |
|
nbmin = max(i__1,i__2); |
|
} |
|
} |
|
} |
|
|
|
if (nb >= nbmin && nb < *k && nx < *k) { |
|
|
|
/* Use blocked code after the last block. */ |
|
/* The first kk columns are handled by the block method. */ |
|
|
|
ki = (*k - nx - 1) / nb * nb; |
|
/* Computing MIN */ |
|
i__1 = *k, i__2 = ki + nb; |
|
kk = min(i__1,i__2); |
|
|
|
/* Set A(1:kk,kk+1:n) to zero. */ |
|
|
|
i__1 = *n; |
|
for (j = kk + 1; j <= i__1; ++j) { |
|
i__2 = kk; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] = 0.f; |
|
/* L10: */ |
|
} |
|
/* L20: */ |
|
} |
|
} else { |
|
kk = 0; |
|
} |
|
|
|
/* Use unblocked code for the last or only block. */ |
|
|
|
if (kk < *n) { |
|
i__1 = *m - kk; |
|
i__2 = *n - kk; |
|
i__3 = *k - kk; |
|
sorg2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, & |
|
tau[kk + 1], &work[1], &iinfo); |
|
} |
|
|
|
if (kk > 0) { |
|
|
|
/* Use blocked code */ |
|
|
|
i__1 = -nb; |
|
for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) { |
|
/* Computing MIN */ |
|
i__2 = nb, i__3 = *k - i__ + 1; |
|
ib = min(i__2,i__3); |
|
if (i__ + ib <= *n) { |
|
|
|
/* Form the triangular factor of the block reflector */ |
|
/* H = H(i) H(i+1) . . . H(i+ib-1) */ |
|
|
|
i__2 = *m - i__ + 1; |
|
slarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ * |
|
a_dim1], lda, &tau[i__], &work[1], &ldwork); |
|
|
|
/* Apply H to A(i:m,i+ib:n) from the left */ |
|
|
|
i__2 = *m - i__ + 1; |
|
i__3 = *n - i__ - ib + 1; |
|
slarfb_("Left", "No transpose", "Forward", "Columnwise", & |
|
i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[ |
|
1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, & |
|
work[ib + 1], &ldwork); |
|
} |
|
|
|
/* Apply H to rows i:m of current block */ |
|
|
|
i__2 = *m - i__ + 1; |
|
sorg2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], & |
|
work[1], &iinfo); |
|
|
|
/* Set rows 1:i-1 of current block to zero */ |
|
|
|
i__2 = i__ + ib - 1; |
|
for (j = i__; j <= i__2; ++j) { |
|
i__3 = i__ - 1; |
|
for (l = 1; l <= i__3; ++l) { |
|
a[l + j * a_dim1] = 0.f; |
|
/* L30: */ |
|
} |
|
/* L40: */ |
|
} |
|
/* L50: */ |
|
} |
|
} |
|
|
|
work[1] = (real) iws; |
|
return 0; |
|
|
|
/* End of SORGQR */ |
|
|
|
} /* sorgqr_ */
|
|
|