Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

153 lines
3.9 KiB

#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal slanst_(char *norm, integer *n, real *d__, real *e)
{
/* System generated locals */
integer i__1;
real ret_val, r__1, r__2, r__3, r__4, r__5;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__;
real sum, scale;
extern logical lsame_(char *, char *);
real anorm;
extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *,
real *);
/* -- LAPACK auxiliary routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLANST returns the value of the one norm, or the Frobenius norm, or */
/* the infinity norm, or the element of largest absolute value of a */
/* real symmetric tridiagonal matrix A. */
/* Description */
/* =========== */
/* SLANST returns the value */
/* SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies the value to be returned in SLANST as described */
/* above. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. When N = 0, SLANST is */
/* set to zero. */
/* D (input) REAL array, dimension (N) */
/* The diagonal elements of A. */
/* E (input) REAL array, dimension (N-1) */
/* The (n-1) sub-diagonal or super-diagonal elements of A. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--e;
--d__;
/* Function Body */
if (*n <= 0) {
anorm = 0.f;
} else if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
anorm = (r__1 = d__[*n], dabs(r__1));
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__2 = anorm, r__3 = (r__1 = d__[i__], dabs(r__1));
anorm = dmax(r__2,r__3);
/* Computing MAX */
r__2 = anorm, r__3 = (r__1 = e[i__], dabs(r__1));
anorm = dmax(r__2,r__3);
/* L10: */
}
} else if (lsame_(norm, "O") || *(unsigned char *)
norm == '1' || lsame_(norm, "I")) {
/* Find norm1(A). */
if (*n == 1) {
anorm = dabs(d__[1]);
} else {
/* Computing MAX */
r__3 = dabs(d__[1]) + dabs(e[1]), r__4 = (r__1 = e[*n - 1], dabs(
r__1)) + (r__2 = d__[*n], dabs(r__2));
anorm = dmax(r__3,r__4);
i__1 = *n - 1;
for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
r__4 = anorm, r__5 = (r__1 = d__[i__], dabs(r__1)) + (r__2 =
e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3));
anorm = dmax(r__4,r__5);
/* L20: */
}
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
scale = 0.f;
sum = 1.f;
if (*n > 1) {
i__1 = *n - 1;
slassq_(&i__1, &e[1], &c__1, &scale, &sum);
sum *= 2;
}
slassq_(n, &d__[1], &c__1, &scale, &sum);
anorm = scale * sqrt(sum);
}
ret_val = anorm;
return ret_val;
/* End of SLANST */
} /* slanst_ */