mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
510 lines
15 KiB
510 lines
15 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static real c_b6 = 0.f; |
|
static integer c__0 = 0; |
|
static real c_b11 = 1.f; |
|
|
|
/* Subroutine */ int slalsd_(char *uplo, integer *smlsiz, integer *n, integer |
|
*nrhs, real *d__, real *e, real *b, integer *ldb, real *rcond, |
|
integer *rank, real *work, integer *iwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer b_dim1, b_offset, i__1, i__2; |
|
real r__1; |
|
|
|
/* Builtin functions */ |
|
double log(doublereal), r_sign(real *, real *); |
|
|
|
/* Local variables */ |
|
integer c__, i__, j, k; |
|
real r__; |
|
integer s, u, z__; |
|
real cs; |
|
integer bx; |
|
real sn; |
|
integer st, vt, nm1, st1; |
|
real eps; |
|
integer iwk; |
|
real tol; |
|
integer difl, difr; |
|
real rcnd; |
|
integer perm, nsub, nlvl, sqre, bxst; |
|
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, |
|
integer *, real *, real *), sgemm_(char *, char *, integer *, |
|
integer *, integer *, real *, real *, integer *, real *, integer * |
|
, real *, real *, integer *); |
|
integer poles, sizei, nsize; |
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, |
|
integer *); |
|
integer nwork, icmpq1, icmpq2; |
|
extern doublereal slamch_(char *); |
|
extern /* Subroutine */ int slasda_(integer *, integer *, integer *, |
|
integer *, real *, real *, real *, integer *, real *, integer *, |
|
real *, real *, real *, real *, integer *, integer *, integer *, |
|
integer *, real *, real *, real *, real *, integer *, integer *), |
|
xerbla_(char *, integer *), slalsa_(integer *, integer *, |
|
integer *, integer *, real *, integer *, real *, integer *, real * |
|
, integer *, real *, integer *, real *, real *, real *, real *, |
|
integer *, integer *, integer *, integer *, real *, real *, real * |
|
, real *, integer *, integer *), slascl_(char *, integer *, |
|
integer *, real *, real *, integer *, integer *, real *, integer * |
|
, integer *); |
|
integer givcol; |
|
extern integer isamax_(integer *, real *, integer *); |
|
extern /* Subroutine */ int slasdq_(char *, integer *, integer *, integer |
|
*, integer *, integer *, real *, real *, real *, integer *, real * |
|
, integer *, real *, integer *, real *, integer *), |
|
slacpy_(char *, integer *, integer *, real *, integer *, real *, |
|
integer *), slartg_(real *, real *, real *, real *, real * |
|
), slaset_(char *, integer *, integer *, real *, real *, real *, |
|
integer *); |
|
real orgnrm; |
|
integer givnum; |
|
extern doublereal slanst_(char *, integer *, real *, real *); |
|
extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *); |
|
integer givptr, smlszp; |
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLALSD uses the singular value decomposition of A to solve the least */ |
|
/* squares problem of finding X to minimize the Euclidean norm of each */ |
|
/* column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */ |
|
/* are N-by-NRHS. The solution X overwrites B. */ |
|
|
|
/* The singular values of A smaller than RCOND times the largest */ |
|
/* singular value are treated as zero in solving the least squares */ |
|
/* problem; in this case a minimum norm solution is returned. */ |
|
/* The actual singular values are returned in D in ascending order. */ |
|
|
|
/* This code makes very mild assumptions about floating point */ |
|
/* arithmetic. It will work on machines with a guard digit in */ |
|
/* add/subtract, or on those binary machines without guard digits */ |
|
/* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */ |
|
/* It could conceivably fail on hexadecimal or decimal machines */ |
|
/* without guard digits, but we know of none. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* = 'U': D and E define an upper bidiagonal matrix. */ |
|
/* = 'L': D and E define a lower bidiagonal matrix. */ |
|
|
|
/* SMLSIZ (input) INTEGER */ |
|
/* The maximum size of the subproblems at the bottom of the */ |
|
/* computation tree. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The dimension of the bidiagonal matrix. N >= 0. */ |
|
|
|
/* NRHS (input) INTEGER */ |
|
/* The number of columns of B. NRHS must be at least 1. */ |
|
|
|
/* D (input/output) REAL array, dimension (N) */ |
|
/* On entry D contains the main diagonal of the bidiagonal */ |
|
/* matrix. On exit, if INFO = 0, D contains its singular values. */ |
|
|
|
/* E (input/output) REAL array, dimension (N-1) */ |
|
/* Contains the super-diagonal entries of the bidiagonal matrix. */ |
|
/* On exit, E has been destroyed. */ |
|
|
|
/* B (input/output) REAL array, dimension (LDB,NRHS) */ |
|
/* On input, B contains the right hand sides of the least */ |
|
/* squares problem. On output, B contains the solution X. */ |
|
|
|
/* LDB (input) INTEGER */ |
|
/* The leading dimension of B in the calling subprogram. */ |
|
/* LDB must be at least max(1,N). */ |
|
|
|
/* RCOND (input) REAL */ |
|
/* The singular values of A less than or equal to RCOND times */ |
|
/* the largest singular value are treated as zero in solving */ |
|
/* the least squares problem. If RCOND is negative, */ |
|
/* machine precision is used instead. */ |
|
/* For example, if diag(S)*X=B were the least squares problem, */ |
|
/* where diag(S) is a diagonal matrix of singular values, the */ |
|
/* solution would be X(i) = B(i) / S(i) if S(i) is greater than */ |
|
/* RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to */ |
|
/* RCOND*max(S). */ |
|
|
|
/* RANK (output) INTEGER */ |
|
/* The number of singular values of A greater than RCOND times */ |
|
/* the largest singular value. */ |
|
|
|
/* WORK (workspace) REAL array, dimension at least */ |
|
/* (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */ |
|
/* where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */ |
|
|
|
/* IWORK (workspace) INTEGER array, dimension at least */ |
|
/* (3*N*NLVL + 11*N) */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
/* > 0: The algorithm failed to compute an singular value while */ |
|
/* working on the submatrix lying in rows and columns */ |
|
/* INFO/(N+1) through MOD(INFO,N+1). */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
/* Osni Marques, LBNL/NERSC, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
--e; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
--work; |
|
--iwork; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*n < 0) { |
|
*info = -3; |
|
} else if (*nrhs < 1) { |
|
*info = -4; |
|
} else if (*ldb < 1 || *ldb < *n) { |
|
*info = -8; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SLALSD", &i__1); |
|
return 0; |
|
} |
|
|
|
eps = slamch_("Epsilon"); |
|
|
|
/* Set up the tolerance. */ |
|
|
|
if (*rcond <= 0.f || *rcond >= 1.f) { |
|
rcnd = eps; |
|
} else { |
|
rcnd = *rcond; |
|
} |
|
|
|
*rank = 0; |
|
|
|
/* Quick return if possible. */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} else if (*n == 1) { |
|
if (d__[1] == 0.f) { |
|
slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb); |
|
} else { |
|
*rank = 1; |
|
slascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[ |
|
b_offset], ldb, info); |
|
d__[1] = dabs(d__[1]); |
|
} |
|
return 0; |
|
} |
|
|
|
/* Rotate the matrix if it is lower bidiagonal. */ |
|
|
|
if (*(unsigned char *)uplo == 'L') { |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
slartg_(&d__[i__], &e[i__], &cs, &sn, &r__); |
|
d__[i__] = r__; |
|
e[i__] = sn * d__[i__ + 1]; |
|
d__[i__ + 1] = cs * d__[i__ + 1]; |
|
if (*nrhs == 1) { |
|
srot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], & |
|
c__1, &cs, &sn); |
|
} else { |
|
work[(i__ << 1) - 1] = cs; |
|
work[i__ * 2] = sn; |
|
} |
|
/* L10: */ |
|
} |
|
if (*nrhs > 1) { |
|
i__1 = *nrhs; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
i__2 = *n - 1; |
|
for (j = 1; j <= i__2; ++j) { |
|
cs = work[(j << 1) - 1]; |
|
sn = work[j * 2]; |
|
srot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ * |
|
b_dim1], &c__1, &cs, &sn); |
|
/* L20: */ |
|
} |
|
/* L30: */ |
|
} |
|
} |
|
} |
|
|
|
/* Scale. */ |
|
|
|
nm1 = *n - 1; |
|
orgnrm = slanst_("M", n, &d__[1], &e[1]); |
|
if (orgnrm == 0.f) { |
|
slaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb); |
|
return 0; |
|
} |
|
|
|
slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info); |
|
slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1, |
|
info); |
|
|
|
/* If N is smaller than the minimum divide size SMLSIZ, then solve */ |
|
/* the problem with another solver. */ |
|
|
|
if (*n <= *smlsiz) { |
|
nwork = *n * *n + 1; |
|
slaset_("A", n, n, &c_b6, &c_b11, &work[1], n); |
|
slasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, & |
|
work[1], n, &b[b_offset], ldb, &work[nwork], info); |
|
if (*info != 0) { |
|
return 0; |
|
} |
|
tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], dabs(r__1)); |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
if (d__[i__] <= tol) { |
|
slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb); |
|
} else { |
|
slascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[ |
|
i__ + b_dim1], ldb, info); |
|
++(*rank); |
|
} |
|
/* L40: */ |
|
} |
|
sgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, & |
|
c_b6, &work[nwork], n); |
|
slacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb); |
|
|
|
/* Unscale. */ |
|
|
|
slascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, |
|
info); |
|
slasrt_("D", n, &d__[1], info); |
|
slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], |
|
ldb, info); |
|
|
|
return 0; |
|
} |
|
|
|
/* Book-keeping and setting up some constants. */ |
|
|
|
nlvl = (integer) (log((real) (*n) / (real) (*smlsiz + 1)) / log(2.f)) + 1; |
|
|
|
smlszp = *smlsiz + 1; |
|
|
|
u = 1; |
|
vt = *smlsiz * *n + 1; |
|
difl = vt + smlszp * *n; |
|
difr = difl + nlvl * *n; |
|
z__ = difr + (nlvl * *n << 1); |
|
c__ = z__ + nlvl * *n; |
|
s = c__ + *n; |
|
poles = s + *n; |
|
givnum = poles + (nlvl << 1) * *n; |
|
bx = givnum + (nlvl << 1) * *n; |
|
nwork = bx + *n * *nrhs; |
|
|
|
sizei = *n + 1; |
|
k = sizei + *n; |
|
givptr = k + *n; |
|
perm = givptr + *n; |
|
givcol = perm + nlvl * *n; |
|
iwk = givcol + (nlvl * *n << 1); |
|
|
|
st = 1; |
|
sqre = 0; |
|
icmpq1 = 1; |
|
icmpq2 = 0; |
|
nsub = 0; |
|
|
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
if ((r__1 = d__[i__], dabs(r__1)) < eps) { |
|
d__[i__] = r_sign(&eps, &d__[i__]); |
|
} |
|
/* L50: */ |
|
} |
|
|
|
i__1 = nm1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
if ((r__1 = e[i__], dabs(r__1)) < eps || i__ == nm1) { |
|
++nsub; |
|
iwork[nsub] = st; |
|
|
|
/* Subproblem found. First determine its size and then */ |
|
/* apply divide and conquer on it. */ |
|
|
|
if (i__ < nm1) { |
|
|
|
/* A subproblem with E(I) small for I < NM1. */ |
|
|
|
nsize = i__ - st + 1; |
|
iwork[sizei + nsub - 1] = nsize; |
|
} else if ((r__1 = e[i__], dabs(r__1)) >= eps) { |
|
|
|
/* A subproblem with E(NM1) not too small but I = NM1. */ |
|
|
|
nsize = *n - st + 1; |
|
iwork[sizei + nsub - 1] = nsize; |
|
} else { |
|
|
|
/* A subproblem with E(NM1) small. This implies an */ |
|
/* 1-by-1 subproblem at D(N), which is not solved */ |
|
/* explicitly. */ |
|
|
|
nsize = i__ - st + 1; |
|
iwork[sizei + nsub - 1] = nsize; |
|
++nsub; |
|
iwork[nsub] = *n; |
|
iwork[sizei + nsub - 1] = 1; |
|
scopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n); |
|
} |
|
st1 = st - 1; |
|
if (nsize == 1) { |
|
|
|
/* This is a 1-by-1 subproblem and is not solved */ |
|
/* explicitly. */ |
|
|
|
scopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n); |
|
} else if (nsize <= *smlsiz) { |
|
|
|
/* This is a small subproblem and is solved by SLASDQ. */ |
|
|
|
slaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1], |
|
n); |
|
slasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[ |
|
st], &work[vt + st1], n, &work[nwork], n, &b[st + |
|
b_dim1], ldb, &work[nwork], info); |
|
if (*info != 0) { |
|
return 0; |
|
} |
|
slacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx + |
|
st1], n); |
|
} else { |
|
|
|
/* A large problem. Solve it using divide and conquer. */ |
|
|
|
slasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], & |
|
work[u + st1], n, &work[vt + st1], &iwork[k + st1], & |
|
work[difl + st1], &work[difr + st1], &work[z__ + st1], |
|
&work[poles + st1], &iwork[givptr + st1], &iwork[ |
|
givcol + st1], n, &iwork[perm + st1], &work[givnum + |
|
st1], &work[c__ + st1], &work[s + st1], &work[nwork], |
|
&iwork[iwk], info); |
|
if (*info != 0) { |
|
return 0; |
|
} |
|
bxst = bx + st1; |
|
slalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, & |
|
work[bxst], n, &work[u + st1], n, &work[vt + st1], & |
|
iwork[k + st1], &work[difl + st1], &work[difr + st1], |
|
&work[z__ + st1], &work[poles + st1], &iwork[givptr + |
|
st1], &iwork[givcol + st1], n, &iwork[perm + st1], & |
|
work[givnum + st1], &work[c__ + st1], &work[s + st1], |
|
&work[nwork], &iwork[iwk], info); |
|
if (*info != 0) { |
|
return 0; |
|
} |
|
} |
|
st = i__ + 1; |
|
} |
|
/* L60: */ |
|
} |
|
|
|
/* Apply the singular values and treat the tiny ones as zero. */ |
|
|
|
tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], dabs(r__1)); |
|
|
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
|
|
/* Some of the elements in D can be negative because 1-by-1 */ |
|
/* subproblems were not solved explicitly. */ |
|
|
|
if ((r__1 = d__[i__], dabs(r__1)) <= tol) { |
|
slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n); |
|
} else { |
|
++(*rank); |
|
slascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[ |
|
bx + i__ - 1], n, info); |
|
} |
|
d__[i__] = (r__1 = d__[i__], dabs(r__1)); |
|
/* L70: */ |
|
} |
|
|
|
/* Now apply back the right singular vectors. */ |
|
|
|
icmpq2 = 1; |
|
i__1 = nsub; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
st = iwork[i__]; |
|
st1 = st - 1; |
|
nsize = iwork[sizei + i__ - 1]; |
|
bxst = bx + st1; |
|
if (nsize == 1) { |
|
scopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb); |
|
} else if (nsize <= *smlsiz) { |
|
sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n, |
|
&work[bxst], n, &c_b6, &b[st + b_dim1], ldb); |
|
} else { |
|
slalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st + |
|
b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[ |
|
k + st1], &work[difl + st1], &work[difr + st1], &work[z__ |
|
+ st1], &work[poles + st1], &iwork[givptr + st1], &iwork[ |
|
givcol + st1], n, &iwork[perm + st1], &work[givnum + st1], |
|
&work[c__ + st1], &work[s + st1], &work[nwork], &iwork[ |
|
iwk], info); |
|
if (*info != 0) { |
|
return 0; |
|
} |
|
} |
|
/* L80: */ |
|
} |
|
|
|
/* Unscale and sort the singular values. */ |
|
|
|
slascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info); |
|
slasrt_("D", n, &d__[1], info); |
|
slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb, |
|
info); |
|
|
|
return 0; |
|
|
|
/* End of SLALSD */ |
|
|
|
} /* slalsd_ */
|
|
|