mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
639 lines
22 KiB
639 lines
22 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__10 = 10; |
|
static integer c__1 = 1; |
|
static integer c__2 = 2; |
|
static integer c__3 = 3; |
|
static integer c__4 = 4; |
|
static integer c_n1 = -1; |
|
|
|
/* Subroutine */ int dsyevr_(char *jobz, char *range, char *uplo, integer *n, |
|
doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer * |
|
il, integer *iu, doublereal *abstol, integer *m, doublereal *w, |
|
doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, |
|
integer *lwork, integer *iwork, integer *liwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; |
|
doublereal d__1, d__2; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
integer i__, j, nb, jj; |
|
doublereal eps, vll, vuu, tmp1; |
|
integer indd, inde; |
|
doublereal anrm; |
|
integer imax; |
|
doublereal rmin, rmax; |
|
integer inddd, indee; |
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, |
|
integer *); |
|
doublereal sigma; |
|
extern logical lsame_(char *, char *); |
|
integer iinfo; |
|
char order[1]; |
|
integer indwk; |
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, |
|
doublereal *, integer *), dswap_(integer *, doublereal *, integer |
|
*, doublereal *, integer *); |
|
integer lwmin; |
|
logical lower, wantz; |
|
extern doublereal dlamch_(char *); |
|
logical alleig, indeig; |
|
integer iscale, ieeeok, indibl, indifl; |
|
logical valeig; |
|
doublereal safmin; |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
doublereal abstll, bignum; |
|
integer indtau, indisp; |
|
extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, |
|
integer *, doublereal *, integer *, integer *, doublereal *, |
|
integer *, doublereal *, integer *, integer *, integer *), |
|
dsterf_(integer *, doublereal *, doublereal *, integer *); |
|
integer indiwo, indwkn; |
|
extern doublereal dlansy_(char *, char *, integer *, doublereal *, |
|
integer *, doublereal *); |
|
extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal |
|
*, doublereal *, integer *, integer *, doublereal *, doublereal *, |
|
doublereal *, integer *, integer *, doublereal *, integer *, |
|
integer *, doublereal *, integer *, integer *), |
|
dstemr_(char *, char *, integer *, doublereal *, doublereal *, |
|
doublereal *, doublereal *, integer *, integer *, integer *, |
|
doublereal *, doublereal *, integer *, integer *, integer *, |
|
logical *, doublereal *, integer *, integer *, integer *, integer |
|
*); |
|
integer liwmin; |
|
logical tryrac; |
|
extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *, |
|
integer *, doublereal *, integer *, doublereal *, doublereal *, |
|
integer *, doublereal *, integer *, integer *); |
|
integer llwrkn, llwork, nsplit; |
|
doublereal smlnum; |
|
extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *, |
|
integer *, doublereal *, doublereal *, doublereal *, doublereal *, |
|
integer *, integer *); |
|
integer lwkopt; |
|
logical lquery; |
|
|
|
|
|
/* -- LAPACK driver routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DSYEVR computes selected eigenvalues and, optionally, eigenvectors */ |
|
/* of a real symmetric matrix A. Eigenvalues and eigenvectors can be */ |
|
/* selected by specifying either a range of values or a range of */ |
|
/* indices for the desired eigenvalues. */ |
|
|
|
/* DSYEVR first reduces the matrix A to tridiagonal form T with a call */ |
|
/* to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute */ |
|
/* the eigenspectrum using Relatively Robust Representations. DSTEMR */ |
|
/* computes eigenvalues by the dqds algorithm, while orthogonal */ |
|
/* eigenvectors are computed from various "good" L D L^T representations */ |
|
/* (also known as Relatively Robust Representations). Gram-Schmidt */ |
|
/* orthogonalization is avoided as far as possible. More specifically, */ |
|
/* the various steps of the algorithm are as follows. */ |
|
|
|
/* For each unreduced block (submatrix) of T, */ |
|
/* (a) Compute T - sigma I = L D L^T, so that L and D */ |
|
/* define all the wanted eigenvalues to high relative accuracy. */ |
|
/* This means that small relative changes in the entries of D and L */ |
|
/* cause only small relative changes in the eigenvalues and */ |
|
/* eigenvectors. The standard (unfactored) representation of the */ |
|
/* tridiagonal matrix T does not have this property in general. */ |
|
/* (b) Compute the eigenvalues to suitable accuracy. */ |
|
/* If the eigenvectors are desired, the algorithm attains full */ |
|
/* accuracy of the computed eigenvalues only right before */ |
|
/* the corresponding vectors have to be computed, see steps c) and d). */ |
|
/* (c) For each cluster of close eigenvalues, select a new */ |
|
/* shift close to the cluster, find a new factorization, and refine */ |
|
/* the shifted eigenvalues to suitable accuracy. */ |
|
/* (d) For each eigenvalue with a large enough relative separation compute */ |
|
/* the corresponding eigenvector by forming a rank revealing twisted */ |
|
/* factorization. Go back to (c) for any clusters that remain. */ |
|
|
|
/* The desired accuracy of the output can be specified by the input */ |
|
/* parameter ABSTOL. */ |
|
|
|
/* For more details, see DSTEMR's documentation and: */ |
|
/* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */ |
|
/* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */ |
|
/* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */ |
|
/* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */ |
|
/* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */ |
|
/* 2004. Also LAPACK Working Note 154. */ |
|
/* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */ |
|
/* tridiagonal eigenvalue/eigenvector problem", */ |
|
/* Computer Science Division Technical Report No. UCB/CSD-97-971, */ |
|
/* UC Berkeley, May 1997. */ |
|
|
|
|
|
/* Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested */ |
|
/* on machines which conform to the ieee-754 floating point standard. */ |
|
/* DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and */ |
|
/* when partial spectrum requests are made. */ |
|
|
|
/* Normal execution of DSTEMR may create NaNs and infinities and */ |
|
/* hence may abort due to a floating point exception in environments */ |
|
/* which do not handle NaNs and infinities in the ieee standard default */ |
|
/* manner. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* JOBZ (input) CHARACTER*1 */ |
|
/* = 'N': Compute eigenvalues only; */ |
|
/* = 'V': Compute eigenvalues and eigenvectors. */ |
|
|
|
/* RANGE (input) CHARACTER*1 */ |
|
/* = 'A': all eigenvalues will be found. */ |
|
/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ |
|
/* will be found. */ |
|
/* = 'I': the IL-th through IU-th eigenvalues will be found. */ |
|
/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */ |
|
/* ********* DSTEIN are called */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* = 'U': Upper triangle of A is stored; */ |
|
/* = 'L': Lower triangle of A is stored. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix A. N >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */ |
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the */ |
|
/* leading N-by-N upper triangular part of A contains the */ |
|
/* upper triangular part of the matrix A. If UPLO = 'L', */ |
|
/* the leading N-by-N lower triangular part of A contains */ |
|
/* the lower triangular part of the matrix A. */ |
|
/* On exit, the lower triangle (if UPLO='L') or the upper */ |
|
/* triangle (if UPLO='U') of A, including the diagonal, is */ |
|
/* destroyed. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* VL (input) DOUBLE PRECISION */ |
|
/* VU (input) DOUBLE PRECISION */ |
|
/* If RANGE='V', the lower and upper bounds of the interval to */ |
|
/* be searched for eigenvalues. VL < VU. */ |
|
/* Not referenced if RANGE = 'A' or 'I'. */ |
|
|
|
/* IL (input) INTEGER */ |
|
/* IU (input) INTEGER */ |
|
/* If RANGE='I', the indices (in ascending order) of the */ |
|
/* smallest and largest eigenvalues to be returned. */ |
|
/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ |
|
/* Not referenced if RANGE = 'A' or 'V'. */ |
|
|
|
/* ABSTOL (input) DOUBLE PRECISION */ |
|
/* The absolute error tolerance for the eigenvalues. */ |
|
/* An approximate eigenvalue is accepted as converged */ |
|
/* when it is determined to lie in an interval [a,b] */ |
|
/* of width less than or equal to */ |
|
|
|
/* ABSTOL + EPS * max( |a|,|b| ) , */ |
|
|
|
/* where EPS is the machine precision. If ABSTOL is less than */ |
|
/* or equal to zero, then EPS*|T| will be used in its place, */ |
|
/* where |T| is the 1-norm of the tridiagonal matrix obtained */ |
|
/* by reducing A to tridiagonal form. */ |
|
|
|
/* See "Computing Small Singular Values of Bidiagonal Matrices */ |
|
/* with Guaranteed High Relative Accuracy," by Demmel and */ |
|
/* Kahan, LAPACK Working Note #3. */ |
|
|
|
/* If high relative accuracy is important, set ABSTOL to */ |
|
/* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */ |
|
/* eigenvalues are computed to high relative accuracy when */ |
|
/* possible in future releases. The current code does not */ |
|
/* make any guarantees about high relative accuracy, but */ |
|
/* future releases will. See J. Barlow and J. Demmel, */ |
|
/* "Computing Accurate Eigensystems of Scaled Diagonally */ |
|
/* Dominant Matrices", LAPACK Working Note #7, for a discussion */ |
|
/* of which matrices define their eigenvalues to high relative */ |
|
/* accuracy. */ |
|
|
|
/* M (output) INTEGER */ |
|
/* The total number of eigenvalues found. 0 <= M <= N. */ |
|
/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ |
|
|
|
/* W (output) DOUBLE PRECISION array, dimension (N) */ |
|
/* The first M elements contain the selected eigenvalues in */ |
|
/* ascending order. */ |
|
|
|
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */ |
|
/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ |
|
/* contain the orthonormal eigenvectors of the matrix A */ |
|
/* corresponding to the selected eigenvalues, with the i-th */ |
|
/* column of Z holding the eigenvector associated with W(i). */ |
|
/* If JOBZ = 'N', then Z is not referenced. */ |
|
/* Note: the user must ensure that at least max(1,M) columns are */ |
|
/* supplied in the array Z; if RANGE = 'V', the exact value of M */ |
|
/* is not known in advance and an upper bound must be used. */ |
|
/* Supplying N columns is always safe. */ |
|
|
|
/* LDZ (input) INTEGER */ |
|
/* The leading dimension of the array Z. LDZ >= 1, and if */ |
|
/* JOBZ = 'V', LDZ >= max(1,N). */ |
|
|
|
/* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ |
|
/* The support of the eigenvectors in Z, i.e., the indices */ |
|
/* indicating the nonzero elements in Z. The i-th eigenvector */ |
|
/* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ |
|
/* ISUPPZ( 2*i ). */ |
|
/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ |
|
|
|
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. LWORK >= max(1,26*N). */ |
|
/* For optimal efficiency, LWORK >= (NB+6)*N, */ |
|
/* where NB is the max of the blocksize for DSYTRD and DORMTR */ |
|
/* returned by ILAENV. */ |
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */ |
|
/* only calculates the optimal size of the WORK array, returns */ |
|
/* this value as the first entry of the WORK array, and no error */ |
|
/* message related to LWORK is issued by XERBLA. */ |
|
|
|
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ |
|
/* On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */ |
|
|
|
/* LIWORK (input) INTEGER */ |
|
/* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ |
|
|
|
/* If LIWORK = -1, then a workspace query is assumed; the */ |
|
/* routine only calculates the optimal size of the IWORK array, */ |
|
/* returns this value as the first entry of the IWORK array, and */ |
|
/* no error message related to LIWORK is issued by XERBLA. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: Internal error */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Inderjit Dhillon, IBM Almaden, USA */ |
|
/* Osni Marques, LBNL/NERSC, USA */ |
|
/* Ken Stanley, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
/* Jason Riedy, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--w; |
|
z_dim1 = *ldz; |
|
z_offset = 1 + z_dim1; |
|
z__ -= z_offset; |
|
--isuppz; |
|
--work; |
|
--iwork; |
|
|
|
/* Function Body */ |
|
ieeeok = ilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4); |
|
|
|
lower = lsame_(uplo, "L"); |
|
wantz = lsame_(jobz, "V"); |
|
alleig = lsame_(range, "A"); |
|
valeig = lsame_(range, "V"); |
|
indeig = lsame_(range, "I"); |
|
|
|
lquery = *lwork == -1 || *liwork == -1; |
|
|
|
/* Computing MAX */ |
|
i__1 = 1, i__2 = *n * 26; |
|
lwmin = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = 1, i__2 = *n * 10; |
|
liwmin = max(i__1,i__2); |
|
|
|
*info = 0; |
|
if (! (wantz || lsame_(jobz, "N"))) { |
|
*info = -1; |
|
} else if (! (alleig || valeig || indeig)) { |
|
*info = -2; |
|
} else if (! (lower || lsame_(uplo, "U"))) { |
|
*info = -3; |
|
} else if (*n < 0) { |
|
*info = -4; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -6; |
|
} else { |
|
if (valeig) { |
|
if (*n > 0 && *vu <= *vl) { |
|
*info = -8; |
|
} |
|
} else if (indeig) { |
|
if (*il < 1 || *il > max(1,*n)) { |
|
*info = -9; |
|
} else if (*iu < min(*n,*il) || *iu > *n) { |
|
*info = -10; |
|
} |
|
} |
|
} |
|
if (*info == 0) { |
|
if (*ldz < 1 || wantz && *ldz < *n) { |
|
*info = -15; |
|
} else if (*lwork < lwmin && ! lquery) { |
|
*info = -18; |
|
} else if (*liwork < liwmin && ! lquery) { |
|
*info = -20; |
|
} |
|
} |
|
|
|
if (*info == 0) { |
|
nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, & |
|
c_n1); |
|
nb = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = (nb + 1) * *n; |
|
lwkopt = max(i__1,lwmin); |
|
work[1] = (doublereal) lwkopt; |
|
iwork[1] = liwmin; |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DSYEVR", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
*m = 0; |
|
if (*n == 0) { |
|
work[1] = 1.; |
|
return 0; |
|
} |
|
|
|
if (*n == 1) { |
|
work[1] = 7.; |
|
if (alleig || indeig) { |
|
*m = 1; |
|
w[1] = a[a_dim1 + 1]; |
|
} else { |
|
if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) { |
|
*m = 1; |
|
w[1] = a[a_dim1 + 1]; |
|
} |
|
} |
|
if (wantz) { |
|
z__[z_dim1 + 1] = 1.; |
|
} |
|
return 0; |
|
} |
|
|
|
/* Get machine constants. */ |
|
|
|
safmin = dlamch_("Safe minimum"); |
|
eps = dlamch_("Precision"); |
|
smlnum = safmin / eps; |
|
bignum = 1. / smlnum; |
|
rmin = sqrt(smlnum); |
|
/* Computing MIN */ |
|
d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); |
|
rmax = min(d__1,d__2); |
|
|
|
/* Scale matrix to allowable range, if necessary. */ |
|
|
|
iscale = 0; |
|
abstll = *abstol; |
|
vll = *vl; |
|
vuu = *vu; |
|
anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]); |
|
if (anrm > 0. && anrm < rmin) { |
|
iscale = 1; |
|
sigma = rmin / anrm; |
|
} else if (anrm > rmax) { |
|
iscale = 1; |
|
sigma = rmax / anrm; |
|
} |
|
if (iscale == 1) { |
|
if (lower) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *n - j + 1; |
|
dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1); |
|
/* L10: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1); |
|
/* L20: */ |
|
} |
|
} |
|
if (*abstol > 0.) { |
|
abstll = *abstol * sigma; |
|
} |
|
if (valeig) { |
|
vll = *vl * sigma; |
|
vuu = *vu * sigma; |
|
} |
|
} |
|
/* Initialize indices into workspaces. Note: The IWORK indices are */ |
|
/* used only if DSTERF or DSTEMR fail. */ |
|
/* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */ |
|
/* elementary reflectors used in DSYTRD. */ |
|
indtau = 1; |
|
/* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */ |
|
indd = indtau + *n; |
|
/* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */ |
|
/* tridiagonal matrix from DSYTRD. */ |
|
inde = indd + *n; |
|
/* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */ |
|
/* -written by DSTEMR (the DSTERF path copies the diagonal to W). */ |
|
inddd = inde + *n; |
|
/* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */ |
|
/* -written while computing the eigenvalues in DSTERF and DSTEMR. */ |
|
indee = inddd + *n; |
|
/* INDWK is the starting offset of the left-over workspace, and */ |
|
/* LLWORK is the remaining workspace size. */ |
|
indwk = indee + *n; |
|
llwork = *lwork - indwk + 1; |
|
/* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */ |
|
/* stores the block indices of each of the M<=N eigenvalues. */ |
|
indibl = 1; |
|
/* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */ |
|
/* stores the starting and finishing indices of each block. */ |
|
indisp = indibl + *n; |
|
/* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ |
|
/* that corresponding to eigenvectors that fail to converge in */ |
|
/* DSTEIN. This information is discarded; if any fail, the driver */ |
|
/* returns INFO > 0. */ |
|
indifl = indisp + *n; |
|
/* INDIWO is the offset of the remaining integer workspace. */ |
|
indiwo = indisp + *n; |
|
|
|
/* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */ |
|
|
|
dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[ |
|
indtau], &work[indwk], &llwork, &iinfo); |
|
|
|
/* If all eigenvalues are desired */ |
|
/* then call DSTERF or DSTEMR and DORMTR. */ |
|
|
|
if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) { |
|
if (! wantz) { |
|
dcopy_(n, &work[indd], &c__1, &w[1], &c__1); |
|
i__1 = *n - 1; |
|
dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); |
|
dsterf_(n, &w[1], &work[indee], info); |
|
} else { |
|
i__1 = *n - 1; |
|
dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); |
|
dcopy_(n, &work[indd], &c__1, &work[inddd], &c__1); |
|
|
|
if (*abstol <= *n * 0. * eps) { |
|
tryrac = TRUE_; |
|
} else { |
|
tryrac = FALSE_; |
|
} |
|
dstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, |
|
m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, & |
|
work[indwk], lwork, &iwork[1], liwork, info); |
|
|
|
|
|
|
|
/* Apply orthogonal matrix used in reduction to tridiagonal */ |
|
/* form to eigenvectors returned by DSTEIN. */ |
|
|
|
if (wantz && *info == 0) { |
|
indwkn = inde; |
|
llwrkn = *lwork - indwkn + 1; |
|
dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau] |
|
, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); |
|
} |
|
} |
|
|
|
|
|
if (*info == 0) { |
|
/* Everything worked. Skip DSTEBZ/DSTEIN. IWORK(:) are */ |
|
/* undefined. */ |
|
*m = *n; |
|
goto L30; |
|
} |
|
*info = 0; |
|
} |
|
|
|
/* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */ |
|
/* Also call DSTEBZ and DSTEIN if DSTEMR fails. */ |
|
|
|
if (wantz) { |
|
*(unsigned char *)order = 'B'; |
|
} else { |
|
*(unsigned char *)order = 'E'; |
|
} |
|
dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ |
|
inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ |
|
indwk], &iwork[indiwo], info); |
|
|
|
if (wantz) { |
|
dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ |
|
indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], & |
|
iwork[indifl], info); |
|
|
|
/* Apply orthogonal matrix used in reduction to tridiagonal */ |
|
/* form to eigenvectors returned by DSTEIN. */ |
|
|
|
indwkn = inde; |
|
llwrkn = *lwork - indwkn + 1; |
|
dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ |
|
z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); |
|
} |
|
|
|
/* If matrix was scaled, then rescale eigenvalues appropriately. */ |
|
|
|
/* Jump here if DSTEMR/DSTEIN succeeded. */ |
|
L30: |
|
if (iscale == 1) { |
|
if (*info == 0) { |
|
imax = *m; |
|
} else { |
|
imax = *info - 1; |
|
} |
|
d__1 = 1. / sigma; |
|
dscal_(&imax, &d__1, &w[1], &c__1); |
|
} |
|
|
|
/* If eigenvalues are not in order, then sort them, along with */ |
|
/* eigenvectors. Note: We do not sort the IFAIL portion of IWORK. */ |
|
/* It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do */ |
|
/* not return this detailed information to the user. */ |
|
|
|
if (wantz) { |
|
i__1 = *m - 1; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__ = 0; |
|
tmp1 = w[j]; |
|
i__2 = *m; |
|
for (jj = j + 1; jj <= i__2; ++jj) { |
|
if (w[jj] < tmp1) { |
|
i__ = jj; |
|
tmp1 = w[jj]; |
|
} |
|
/* L40: */ |
|
} |
|
|
|
if (i__ != 0) { |
|
w[i__] = w[j]; |
|
w[j] = tmp1; |
|
dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], |
|
&c__1); |
|
} |
|
/* L50: */ |
|
} |
|
} |
|
|
|
/* Set WORK(1) to optimal workspace size. */ |
|
|
|
work[1] = (doublereal) lwkopt; |
|
iwork[1] = liwmin; |
|
|
|
return 0; |
|
|
|
/* End of DSYEVR */ |
|
|
|
} /* dsyevr_ */
|
|
|