mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
5.5 KiB
210 lines
5.5 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static doublereal c_b10 = -1.; |
|
static doublereal c_b12 = 1.; |
|
|
|
/* Subroutine */ int dpotf2_(char *uplo, integer *n, doublereal *a, integer * |
|
lda, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2, i__3; |
|
doublereal d__1; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
integer j; |
|
doublereal ajj; |
|
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, |
|
integer *); |
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, |
|
integer *); |
|
extern logical lsame_(char *, char *); |
|
extern /* Subroutine */ int dgemv_(char *, integer *, integer *, |
|
doublereal *, doublereal *, integer *, doublereal *, integer *, |
|
doublereal *, doublereal *, integer *); |
|
logical upper; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DPOTF2 computes the Cholesky factorization of a real symmetric */ |
|
/* positive definite matrix A. */ |
|
|
|
/* The factorization has the form */ |
|
/* A = U' * U , if UPLO = 'U', or */ |
|
/* A = L * L', if UPLO = 'L', */ |
|
/* where U is an upper triangular matrix and L is lower triangular. */ |
|
|
|
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* Specifies whether the upper or lower triangular part of the */ |
|
/* symmetric matrix A is stored. */ |
|
/* = 'U': Upper triangular */ |
|
/* = 'L': Lower triangular */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix A. N >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ |
|
/* n by n upper triangular part of A contains the upper */ |
|
/* triangular part of the matrix A, and the strictly lower */ |
|
/* triangular part of A is not referenced. If UPLO = 'L', the */ |
|
/* leading n by n lower triangular part of A contains the lower */ |
|
/* triangular part of the matrix A, and the strictly upper */ |
|
/* triangular part of A is not referenced. */ |
|
|
|
/* On exit, if INFO = 0, the factor U or L from the Cholesky */ |
|
/* factorization A = U'*U or A = L*L'. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */ |
|
/* > 0: if INFO = k, the leading minor of order k is not */ |
|
/* positive definite, and the factorization could not be */ |
|
/* completed. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
upper = lsame_(uplo, "U"); |
|
if (! upper && ! lsame_(uplo, "L")) { |
|
*info = -1; |
|
} else if (*n < 0) { |
|
*info = -2; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -4; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DPOTF2", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
if (upper) { |
|
|
|
/* Compute the Cholesky factorization A = U'*U. */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
|
|
/* Compute U(J,J) and test for non-positive-definiteness. */ |
|
|
|
i__2 = j - 1; |
|
ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j * a_dim1 + 1], &c__1, |
|
&a[j * a_dim1 + 1], &c__1); |
|
if (ajj <= 0.) { |
|
a[j + j * a_dim1] = ajj; |
|
goto L30; |
|
} |
|
ajj = sqrt(ajj); |
|
a[j + j * a_dim1] = ajj; |
|
|
|
/* Compute elements J+1:N of row J. */ |
|
|
|
if (j < *n) { |
|
i__2 = j - 1; |
|
i__3 = *n - j; |
|
dgemv_("Transpose", &i__2, &i__3, &c_b10, &a[(j + 1) * a_dim1 |
|
+ 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b12, &a[j + ( |
|
j + 1) * a_dim1], lda); |
|
i__2 = *n - j; |
|
d__1 = 1. / ajj; |
|
dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda); |
|
} |
|
/* L10: */ |
|
} |
|
} else { |
|
|
|
/* Compute the Cholesky factorization A = L*L'. */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
|
|
/* Compute L(J,J) and test for non-positive-definiteness. */ |
|
|
|
i__2 = j - 1; |
|
ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j + a_dim1], lda, &a[j |
|
+ a_dim1], lda); |
|
if (ajj <= 0.) { |
|
a[j + j * a_dim1] = ajj; |
|
goto L30; |
|
} |
|
ajj = sqrt(ajj); |
|
a[j + j * a_dim1] = ajj; |
|
|
|
/* Compute elements J+1:N of column J. */ |
|
|
|
if (j < *n) { |
|
i__2 = *n - j; |
|
i__3 = j - 1; |
|
dgemv_("No transpose", &i__2, &i__3, &c_b10, &a[j + 1 + |
|
a_dim1], lda, &a[j + a_dim1], lda, &c_b12, &a[j + 1 + |
|
j * a_dim1], &c__1); |
|
i__2 = *n - j; |
|
d__1 = 1. / ajj; |
|
dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); |
|
} |
|
/* L20: */ |
|
} |
|
} |
|
goto L40; |
|
|
|
L30: |
|
*info = j; |
|
|
|
L40: |
|
return 0; |
|
|
|
/* End of DPOTF2 */ |
|
|
|
} /* dpotf2_ */
|
|
|