mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
361 lines
9.0 KiB
361 lines
9.0 KiB
#include "clapack.h" |
|
|
|
/* Subroutine */ int dlaed6_(integer *kniter, logical *orgati, doublereal * |
|
rho, doublereal *d__, doublereal *z__, doublereal *finit, doublereal * |
|
tau, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer i__1; |
|
doublereal d__1, d__2, d__3, d__4; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *); |
|
|
|
/* Local variables */ |
|
doublereal a, b, c__, f; |
|
integer i__; |
|
doublereal fc, df, ddf, lbd, eta, ubd, eps, base; |
|
integer iter; |
|
doublereal temp, temp1, temp2, temp3, temp4; |
|
logical scale; |
|
integer niter; |
|
doublereal small1, small2, sminv1, sminv2; |
|
extern doublereal dlamch_(char *); |
|
doublereal dscale[3], sclfac, zscale[3], erretm, sclinv; |
|
|
|
|
|
/* -- LAPACK routine (version 3.1.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* February 2007 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLAED6 computes the positive or negative root (closest to the origin) */ |
|
/* of */ |
|
/* z(1) z(2) z(3) */ |
|
/* f(x) = rho + --------- + ---------- + --------- */ |
|
/* d(1)-x d(2)-x d(3)-x */ |
|
|
|
/* It is assumed that */ |
|
|
|
/* if ORGATI = .true. the root is between d(2) and d(3); */ |
|
/* otherwise it is between d(1) and d(2) */ |
|
|
|
/* This routine will be called by DLAED4 when necessary. In most cases, */ |
|
/* the root sought is the smallest in magnitude, though it might not be */ |
|
/* in some extremely rare situations. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* KNITER (input) INTEGER */ |
|
/* Refer to DLAED4 for its significance. */ |
|
|
|
/* ORGATI (input) LOGICAL */ |
|
/* If ORGATI is true, the needed root is between d(2) and */ |
|
/* d(3); otherwise it is between d(1) and d(2). See */ |
|
/* DLAED4 for further details. */ |
|
|
|
/* RHO (input) DOUBLE PRECISION */ |
|
/* Refer to the equation f(x) above. */ |
|
|
|
/* D (input) DOUBLE PRECISION array, dimension (3) */ |
|
/* D satisfies d(1) < d(2) < d(3). */ |
|
|
|
/* Z (input) DOUBLE PRECISION array, dimension (3) */ |
|
/* Each of the elements in z must be positive. */ |
|
|
|
/* FINIT (input) DOUBLE PRECISION */ |
|
/* The value of f at 0. It is more accurate than the one */ |
|
/* evaluated inside this routine (if someone wants to do */ |
|
/* so). */ |
|
|
|
/* TAU (output) DOUBLE PRECISION */ |
|
/* The root of the equation f(x). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* > 0: if INFO = 1, failure to converge */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* 30/06/99: Based on contributions by */ |
|
/* Ren-Cang Li, Computer Science Division, University of California */ |
|
/* at Berkeley, USA */ |
|
|
|
/* 10/02/03: This version has a few statements commented out for thread */ |
|
/* safety (machine parameters are computed on each entry). SJH. */ |
|
|
|
/* 05/10/06: Modified from a new version of Ren-Cang Li, use */ |
|
/* Gragg-Thornton-Warner cubic convergent scheme for better stability. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Local Arrays .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Parameter adjustments */ |
|
--z__; |
|
--d__; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*orgati) { |
|
lbd = d__[2]; |
|
ubd = d__[3]; |
|
} else { |
|
lbd = d__[1]; |
|
ubd = d__[2]; |
|
} |
|
if (*finit < 0.) { |
|
lbd = 0.; |
|
} else { |
|
ubd = 0.; |
|
} |
|
|
|
niter = 1; |
|
*tau = 0.; |
|
if (*kniter == 2) { |
|
if (*orgati) { |
|
temp = (d__[3] - d__[2]) / 2.; |
|
c__ = *rho + z__[1] / (d__[1] - d__[2] - temp); |
|
a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3]; |
|
b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2]; |
|
} else { |
|
temp = (d__[1] - d__[2]) / 2.; |
|
c__ = *rho + z__[3] / (d__[3] - d__[2] - temp); |
|
a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2]; |
|
b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1]; |
|
} |
|
/* Computing MAX */ |
|
d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__); |
|
temp = max(d__1,d__2); |
|
a /= temp; |
|
b /= temp; |
|
c__ /= temp; |
|
if (c__ == 0.) { |
|
*tau = b / a; |
|
} else if (a <= 0.) { |
|
*tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / ( |
|
c__ * 2.); |
|
} else { |
|
*tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)) |
|
)); |
|
} |
|
if (*tau < lbd || *tau > ubd) { |
|
*tau = (lbd + ubd) / 2.; |
|
} |
|
if (d__[1] == *tau || d__[2] == *tau || d__[3] == *tau) { |
|
*tau = 0.; |
|
} else { |
|
temp = *finit + *tau * z__[1] / (d__[1] * (d__[1] - *tau)) + *tau |
|
* z__[2] / (d__[2] * (d__[2] - *tau)) + *tau * z__[3] / ( |
|
d__[3] * (d__[3] - *tau)); |
|
if (temp <= 0.) { |
|
lbd = *tau; |
|
} else { |
|
ubd = *tau; |
|
} |
|
if (abs(*finit) <= abs(temp)) { |
|
*tau = 0.; |
|
} |
|
} |
|
} |
|
|
|
/* get machine parameters for possible scaling to avoid overflow */ |
|
|
|
/* modified by Sven: parameters SMALL1, SMINV1, SMALL2, */ |
|
/* SMINV2, EPS are not SAVEd anymore between one call to the */ |
|
/* others but recomputed at each call */ |
|
|
|
eps = dlamch_("Epsilon"); |
|
base = dlamch_("Base"); |
|
i__1 = (integer) (log(dlamch_("SafMin")) / log(base) / 3.); |
|
small1 = pow_di(&base, &i__1); |
|
sminv1 = 1. / small1; |
|
small2 = small1 * small1; |
|
sminv2 = sminv1 * sminv1; |
|
|
|
/* Determine if scaling of inputs necessary to avoid overflow */ |
|
/* when computing 1/TEMP**3 */ |
|
|
|
if (*orgati) { |
|
/* Computing MIN */ |
|
d__3 = (d__1 = d__[2] - *tau, abs(d__1)), d__4 = (d__2 = d__[3] - * |
|
tau, abs(d__2)); |
|
temp = min(d__3,d__4); |
|
} else { |
|
/* Computing MIN */ |
|
d__3 = (d__1 = d__[1] - *tau, abs(d__1)), d__4 = (d__2 = d__[2] - * |
|
tau, abs(d__2)); |
|
temp = min(d__3,d__4); |
|
} |
|
scale = FALSE_; |
|
if (temp <= small1) { |
|
scale = TRUE_; |
|
if (temp <= small2) { |
|
|
|
/* Scale up by power of radix nearest 1/SAFMIN**(2/3) */ |
|
|
|
sclfac = sminv2; |
|
sclinv = small2; |
|
} else { |
|
|
|
/* Scale up by power of radix nearest 1/SAFMIN**(1/3) */ |
|
|
|
sclfac = sminv1; |
|
sclinv = small1; |
|
} |
|
|
|
/* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */ |
|
|
|
for (i__ = 1; i__ <= 3; ++i__) { |
|
dscale[i__ - 1] = d__[i__] * sclfac; |
|
zscale[i__ - 1] = z__[i__] * sclfac; |
|
/* L10: */ |
|
} |
|
*tau *= sclfac; |
|
lbd *= sclfac; |
|
ubd *= sclfac; |
|
} else { |
|
|
|
/* Copy D and Z to DSCALE and ZSCALE */ |
|
|
|
for (i__ = 1; i__ <= 3; ++i__) { |
|
dscale[i__ - 1] = d__[i__]; |
|
zscale[i__ - 1] = z__[i__]; |
|
/* L20: */ |
|
} |
|
} |
|
|
|
fc = 0.; |
|
df = 0.; |
|
ddf = 0.; |
|
for (i__ = 1; i__ <= 3; ++i__) { |
|
temp = 1. / (dscale[i__ - 1] - *tau); |
|
temp1 = zscale[i__ - 1] * temp; |
|
temp2 = temp1 * temp; |
|
temp3 = temp2 * temp; |
|
fc += temp1 / dscale[i__ - 1]; |
|
df += temp2; |
|
ddf += temp3; |
|
/* L30: */ |
|
} |
|
f = *finit + *tau * fc; |
|
|
|
if (abs(f) <= 0.) { |
|
goto L60; |
|
} |
|
if (f <= 0.) { |
|
lbd = *tau; |
|
} else { |
|
ubd = *tau; |
|
} |
|
|
|
/* Iteration begins -- Use Gragg-Thornton-Warner cubic convergent */ |
|
/* scheme */ |
|
|
|
/* It is not hard to see that */ |
|
|
|
/* 1) Iterations will go up monotonically */ |
|
/* if FINIT < 0; */ |
|
|
|
/* 2) Iterations will go down monotonically */ |
|
/* if FINIT > 0. */ |
|
|
|
iter = niter + 1; |
|
|
|
for (niter = iter; niter <= 40; ++niter) { |
|
|
|
if (*orgati) { |
|
temp1 = dscale[1] - *tau; |
|
temp2 = dscale[2] - *tau; |
|
} else { |
|
temp1 = dscale[0] - *tau; |
|
temp2 = dscale[1] - *tau; |
|
} |
|
a = (temp1 + temp2) * f - temp1 * temp2 * df; |
|
b = temp1 * temp2 * f; |
|
c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf; |
|
/* Computing MAX */ |
|
d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__); |
|
temp = max(d__1,d__2); |
|
a /= temp; |
|
b /= temp; |
|
c__ /= temp; |
|
if (c__ == 0.) { |
|
eta = b / a; |
|
} else if (a <= 0.) { |
|
eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ |
|
* 2.); |
|
} else { |
|
eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))) |
|
); |
|
} |
|
if (f * eta >= 0.) { |
|
eta = -f / df; |
|
} |
|
|
|
*tau += eta; |
|
if (*tau < lbd || *tau > ubd) { |
|
*tau = (lbd + ubd) / 2.; |
|
} |
|
|
|
fc = 0.; |
|
erretm = 0.; |
|
df = 0.; |
|
ddf = 0.; |
|
for (i__ = 1; i__ <= 3; ++i__) { |
|
temp = 1. / (dscale[i__ - 1] - *tau); |
|
temp1 = zscale[i__ - 1] * temp; |
|
temp2 = temp1 * temp; |
|
temp3 = temp2 * temp; |
|
temp4 = temp1 / dscale[i__ - 1]; |
|
fc += temp4; |
|
erretm += abs(temp4); |
|
df += temp2; |
|
ddf += temp3; |
|
/* L40: */ |
|
} |
|
f = *finit + *tau * fc; |
|
erretm = (abs(*finit) + abs(*tau) * erretm) * 8. + abs(*tau) * df; |
|
if (abs(f) <= eps * erretm) { |
|
goto L60; |
|
} |
|
if (f <= 0.) { |
|
lbd = *tau; |
|
} else { |
|
ubd = *tau; |
|
} |
|
/* L50: */ |
|
} |
|
*info = 1; |
|
L60: |
|
|
|
/* Undo scaling */ |
|
|
|
if (scale) { |
|
*tau *= sclinv; |
|
} |
|
return 0; |
|
|
|
/* End of DLAED6 */ |
|
|
|
} /* dlaed6_ */
|
|
|