mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1595 lines
51 KiB
1595 lines
51 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c_n1 = -1; |
|
static integer c__0 = 0; |
|
static doublereal c_b227 = 0.; |
|
static doublereal c_b248 = 1.; |
|
|
|
/* Subroutine */ int dgesdd_(char *jobz, integer *m, integer *n, doublereal * |
|
a, integer *lda, doublereal *s, doublereal *u, integer *ldu, |
|
doublereal *vt, integer *ldvt, doublereal *work, integer *lwork, |
|
integer *iwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, |
|
i__2, i__3; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
integer i__, ie, il, ir, iu, blk; |
|
doublereal dum[1], eps; |
|
integer ivt, iscl; |
|
doublereal anrm; |
|
integer idum[1], ierr, itau; |
|
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, |
|
integer *, doublereal *, doublereal *, integer *, doublereal *, |
|
integer *, doublereal *, doublereal *, integer *); |
|
extern logical lsame_(char *, char *); |
|
integer chunk, minmn, wrkbl, itaup, itauq, mnthr; |
|
logical wntqa; |
|
integer nwork; |
|
logical wntqn, wntqo, wntqs; |
|
extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal |
|
*, doublereal *, doublereal *, integer *, doublereal *, integer *, |
|
doublereal *, integer *, doublereal *, integer *, integer *), dgebrd_(integer *, integer *, doublereal *, |
|
integer *, doublereal *, doublereal *, doublereal *, doublereal *, |
|
doublereal *, integer *, integer *); |
|
extern doublereal dlamch_(char *), dlange_(char *, integer *, |
|
integer *, doublereal *, integer *, doublereal *); |
|
integer bdspac; |
|
extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, |
|
integer *, doublereal *, doublereal *, integer *, integer *), |
|
dlascl_(char *, integer *, integer *, doublereal *, doublereal *, |
|
integer *, integer *, doublereal *, integer *, integer *), |
|
dgeqrf_(integer *, integer *, doublereal *, integer *, |
|
doublereal *, doublereal *, integer *, integer *), dlacpy_(char *, |
|
integer *, integer *, doublereal *, integer *, doublereal *, |
|
integer *), dlaset_(char *, integer *, integer *, |
|
doublereal *, doublereal *, doublereal *, integer *), |
|
xerbla_(char *, integer *), dorgbr_(char *, integer *, |
|
integer *, integer *, doublereal *, integer *, doublereal *, |
|
doublereal *, integer *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
doublereal bignum; |
|
extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *, |
|
integer *, integer *, doublereal *, integer *, doublereal *, |
|
doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *, |
|
doublereal *, integer *, doublereal *, doublereal *, integer *, |
|
integer *), dorgqr_(integer *, integer *, integer *, doublereal *, |
|
integer *, doublereal *, doublereal *, integer *, integer *); |
|
integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt; |
|
doublereal smlnum; |
|
logical wntqas, lquery; |
|
|
|
|
|
/* -- LAPACK driver routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DGESDD computes the singular value decomposition (SVD) of a real */ |
|
/* M-by-N matrix A, optionally computing the left and right singular */ |
|
/* vectors. If singular vectors are desired, it uses a */ |
|
/* divide-and-conquer algorithm. */ |
|
|
|
/* The SVD is written */ |
|
|
|
/* A = U * SIGMA * transpose(V) */ |
|
|
|
/* where SIGMA is an M-by-N matrix which is zero except for its */ |
|
/* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */ |
|
/* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */ |
|
/* are the singular values of A; they are real and non-negative, and */ |
|
/* are returned in descending order. The first min(m,n) columns of */ |
|
/* U and V are the left and right singular vectors of A. */ |
|
|
|
/* Note that the routine returns VT = V**T, not V. */ |
|
|
|
/* The divide and conquer algorithm makes very mild assumptions about */ |
|
/* floating point arithmetic. It will work on machines with a guard */ |
|
/* digit in add/subtract, or on those binary machines without guard */ |
|
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ |
|
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ |
|
/* without guard digits, but we know of none. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* JOBZ (input) CHARACTER*1 */ |
|
/* Specifies options for computing all or part of the matrix U: */ |
|
/* = 'A': all M columns of U and all N rows of V**T are */ |
|
/* returned in the arrays U and VT; */ |
|
/* = 'S': the first min(M,N) columns of U and the first */ |
|
/* min(M,N) rows of V**T are returned in the arrays U */ |
|
/* and VT; */ |
|
/* = 'O': If M >= N, the first N columns of U are overwritten */ |
|
/* on the array A and all rows of V**T are returned in */ |
|
/* the array VT; */ |
|
/* otherwise, all columns of U are returned in the */ |
|
/* array U and the first M rows of V**T are overwritten */ |
|
/* in the array A; */ |
|
/* = 'N': no columns of U or rows of V**T are computed. */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the input matrix A. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the input matrix A. N >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* On entry, the M-by-N matrix A. */ |
|
/* On exit, */ |
|
/* if JOBZ = 'O', A is overwritten with the first N columns */ |
|
/* of U (the left singular vectors, stored */ |
|
/* columnwise) if M >= N; */ |
|
/* A is overwritten with the first M rows */ |
|
/* of V**T (the right singular vectors, stored */ |
|
/* rowwise) otherwise. */ |
|
/* if JOBZ .ne. 'O', the contents of A are destroyed. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* S (output) DOUBLE PRECISION array, dimension (min(M,N)) */ |
|
/* The singular values of A, sorted so that S(i) >= S(i+1). */ |
|
|
|
/* U (output) DOUBLE PRECISION array, dimension (LDU,UCOL) */ |
|
/* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */ |
|
/* UCOL = min(M,N) if JOBZ = 'S'. */ |
|
/* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */ |
|
/* orthogonal matrix U; */ |
|
/* if JOBZ = 'S', U contains the first min(M,N) columns of U */ |
|
/* (the left singular vectors, stored columnwise); */ |
|
/* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */ |
|
|
|
/* LDU (input) INTEGER */ |
|
/* The leading dimension of the array U. LDU >= 1; if */ |
|
/* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */ |
|
|
|
/* VT (output) DOUBLE PRECISION array, dimension (LDVT,N) */ |
|
/* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */ |
|
/* N-by-N orthogonal matrix V**T; */ |
|
/* if JOBZ = 'S', VT contains the first min(M,N) rows of */ |
|
/* V**T (the right singular vectors, stored rowwise); */ |
|
/* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */ |
|
|
|
/* LDVT (input) INTEGER */ |
|
/* The leading dimension of the array VT. LDVT >= 1; if */ |
|
/* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */ |
|
/* if JOBZ = 'S', LDVT >= min(M,N). */ |
|
|
|
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. LWORK >= 1. */ |
|
/* If JOBZ = 'N', */ |
|
/* LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)). */ |
|
/* If JOBZ = 'O', */ |
|
/* LWORK >= 3*min(M,N)*min(M,N) + */ |
|
/* max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). */ |
|
/* If JOBZ = 'S' or 'A' */ |
|
/* LWORK >= 3*min(M,N)*min(M,N) + */ |
|
/* max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). */ |
|
/* For good performance, LWORK should generally be larger. */ |
|
/* If LWORK = -1 but other input arguments are legal, WORK(1) */ |
|
/* returns the optimal LWORK. */ |
|
|
|
/* IWORK (workspace) INTEGER array, dimension (8*min(M,N)) */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
/* > 0: DBDSDC did not converge, updating process failed. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Local Arrays .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--s; |
|
u_dim1 = *ldu; |
|
u_offset = 1 + u_dim1; |
|
u -= u_offset; |
|
vt_dim1 = *ldvt; |
|
vt_offset = 1 + vt_dim1; |
|
vt -= vt_offset; |
|
--work; |
|
--iwork; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
minmn = min(*m,*n); |
|
wntqa = lsame_(jobz, "A"); |
|
wntqs = lsame_(jobz, "S"); |
|
wntqas = wntqa || wntqs; |
|
wntqo = lsame_(jobz, "O"); |
|
wntqn = lsame_(jobz, "N"); |
|
lquery = *lwork == -1; |
|
|
|
if (! (wntqa || wntqs || wntqo || wntqn)) { |
|
*info = -1; |
|
} else if (*m < 0) { |
|
*info = -2; |
|
} else if (*n < 0) { |
|
*info = -3; |
|
} else if (*lda < max(1,*m)) { |
|
*info = -5; |
|
} else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < * |
|
m) { |
|
*info = -8; |
|
} else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn || |
|
wntqo && *m >= *n && *ldvt < *n) { |
|
*info = -10; |
|
} |
|
|
|
/* Compute workspace */ |
|
/* (Note: Comments in the code beginning "Workspace:" describe the */ |
|
/* minimal amount of workspace needed at that point in the code, */ |
|
/* as well as the preferred amount for good performance. */ |
|
/* NB refers to the optimal block size for the immediately */ |
|
/* following subroutine, as returned by ILAENV.) */ |
|
|
|
if (*info == 0) { |
|
minwrk = 1; |
|
maxwrk = 1; |
|
if (*m >= *n && minmn > 0) { |
|
|
|
/* Compute space needed for DBDSDC */ |
|
|
|
mnthr = (integer) (minmn * 11. / 6.); |
|
if (wntqn) { |
|
bdspac = *n * 7; |
|
} else { |
|
bdspac = *n * 3 * *n + (*n << 2); |
|
} |
|
if (*m >= mnthr) { |
|
if (wntqn) { |
|
|
|
/* Path 1 (M much larger than N, JOBZ='N') */ |
|
|
|
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", n, n, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = bdspac + *n; |
|
} else if (wntqo) { |
|
|
|
/* Path 2 (M much larger than N, JOBZ='O') */ |
|
|
|
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR", |
|
" ", m, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", n, n, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + (*n << 1) * *n; |
|
minwrk = bdspac + (*n << 1) * *n + *n * 3; |
|
} else if (wntqs) { |
|
|
|
/* Path 3 (M much larger than N, JOBZ='S') */ |
|
|
|
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR", |
|
" ", m, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", n, n, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + *n * *n; |
|
minwrk = bdspac + *n * *n + *n * 3; |
|
} else if (wntqa) { |
|
|
|
/* Path 4 (M much larger than N, JOBZ='A') */ |
|
|
|
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n + *m * ilaenv_(&c__1, "DORGQR", |
|
" ", m, m, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", n, n, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + *n * *n; |
|
minwrk = bdspac + *n * *n + *n * 3; |
|
} |
|
} else { |
|
|
|
/* Path 5 (M at least N, but not much larger) */ |
|
|
|
wrkbl = *n * 3 + (*m + *n) * ilaenv_(&c__1, "DGEBRD", " ", m, |
|
n, &c_n1, &c_n1); |
|
if (wntqn) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n * 3; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = *n * 3 + max(*m,bdspac); |
|
} else if (wntqo) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + *m * *n; |
|
/* Computing MAX */ |
|
i__1 = *m, i__2 = *n * *n + bdspac; |
|
minwrk = *n * 3 + max(i__1,i__2); |
|
} else if (wntqs) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *n * 3; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = *n * 3 + max(*m,bdspac); |
|
} else if (wntqa) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = bdspac + *n * 3; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = *n * 3 + max(*m,bdspac); |
|
} |
|
} |
|
} else if (minmn > 0) { |
|
|
|
/* Compute space needed for DBDSDC */ |
|
|
|
mnthr = (integer) (minmn * 11. / 6.); |
|
if (wntqn) { |
|
bdspac = *m * 7; |
|
} else { |
|
bdspac = *m * 3 * *m + (*m << 2); |
|
} |
|
if (*n >= mnthr) { |
|
if (wntqn) { |
|
|
|
/* Path 1t (N much larger than M, JOBZ='N') */ |
|
|
|
wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", m, m, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = bdspac + *m; |
|
} else if (wntqo) { |
|
|
|
/* Path 2t (N much larger than M, JOBZ='O') */ |
|
|
|
wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "DORGLQ", |
|
" ", m, n, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", m, m, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", m, m, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + (*m << 1) * *m; |
|
minwrk = bdspac + (*m << 1) * *m + *m * 3; |
|
} else if (wntqs) { |
|
|
|
/* Path 3t (N much larger than M, JOBZ='S') */ |
|
|
|
wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "DORGLQ", |
|
" ", m, n, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", m, m, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", m, m, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + *m * *m; |
|
minwrk = bdspac + *m * *m + *m * 3; |
|
} else if (wntqa) { |
|
|
|
/* Path 4t (N much larger than M, JOBZ='A') */ |
|
|
|
wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m + *n * ilaenv_(&c__1, "DORGLQ", |
|
" ", n, n, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, |
|
"DGEBRD", " ", m, m, &c_n1, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", m, m, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + *m * *m; |
|
minwrk = bdspac + *m * *m + *m * 3; |
|
} |
|
} else { |
|
|
|
/* Path 5t (N greater than M, but not much larger) */ |
|
|
|
wrkbl = *m * 3 + (*m + *n) * ilaenv_(&c__1, "DGEBRD", " ", m, |
|
n, &c_n1, &c_n1); |
|
if (wntqn) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = *m * 3 + max(*n,bdspac); |
|
} else if (wntqo) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", m, n, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
wrkbl = max(i__1,i__2); |
|
maxwrk = wrkbl + *m * *n; |
|
/* Computing MAX */ |
|
i__1 = *n, i__2 = *m * *m + bdspac; |
|
minwrk = *m * 3 + max(i__1,i__2); |
|
} else if (wntqs) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", m, n, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = *m * 3 + max(*n,bdspac); |
|
} else if (wntqa) { |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "QLN", m, m, n, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR" |
|
, "PRT", n, n, m, &c_n1); |
|
wrkbl = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = wrkbl, i__2 = bdspac + *m * 3; |
|
maxwrk = max(i__1,i__2); |
|
minwrk = *m * 3 + max(*n,bdspac); |
|
} |
|
} |
|
} |
|
maxwrk = max(maxwrk,minwrk); |
|
work[1] = (doublereal) maxwrk; |
|
|
|
if (*lwork < minwrk && ! lquery) { |
|
*info = -12; |
|
} |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DGESDD", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*m == 0 || *n == 0) { |
|
return 0; |
|
} |
|
|
|
/* Get machine constants */ |
|
|
|
eps = dlamch_("P"); |
|
smlnum = sqrt(dlamch_("S")) / eps; |
|
bignum = 1. / smlnum; |
|
|
|
/* Scale A if max element outside range [SMLNUM,BIGNUM] */ |
|
|
|
anrm = dlange_("M", m, n, &a[a_offset], lda, dum); |
|
iscl = 0; |
|
if (anrm > 0. && anrm < smlnum) { |
|
iscl = 1; |
|
dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, & |
|
ierr); |
|
} else if (anrm > bignum) { |
|
iscl = 1; |
|
dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, & |
|
ierr); |
|
} |
|
|
|
if (*m >= *n) { |
|
|
|
/* A has at least as many rows as columns. If A has sufficiently */ |
|
/* more rows than columns, first reduce using the QR */ |
|
/* decomposition (if sufficient workspace available) */ |
|
|
|
if (*m >= mnthr) { |
|
|
|
if (wntqn) { |
|
|
|
/* Path 1 (M much larger than N, JOBZ='N') */ |
|
/* No singular vectors to be computed */ |
|
|
|
itau = 1; |
|
nwork = itau + *n; |
|
|
|
/* Compute A=Q*R */ |
|
/* (Workspace: need 2*N, prefer N+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__1, &ierr); |
|
|
|
/* Zero out below R */ |
|
|
|
i__1 = *n - 1; |
|
i__2 = *n - 1; |
|
dlaset_("L", &i__1, &i__2, &c_b227, &c_b227, &a[a_dim1 + 2], |
|
lda); |
|
ie = 1; |
|
itauq = ie + *n; |
|
itaup = itauq + *n; |
|
nwork = itaup + *n; |
|
|
|
/* Bidiagonalize R in A */ |
|
/* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__1, &ierr); |
|
nwork = ie + *n; |
|
|
|
/* Perform bidiagonal SVD, computing singular values only */ |
|
/* (Workspace: need N+BDSPAC) */ |
|
|
|
dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1, |
|
dum, idum, &work[nwork], &iwork[1], info); |
|
|
|
} else if (wntqo) { |
|
|
|
/* Path 2 (M much larger than N, JOBZ = 'O') */ |
|
/* N left singular vectors to be overwritten on A and */ |
|
/* N right singular vectors to be computed in VT */ |
|
|
|
ir = 1; |
|
|
|
/* WORK(IR) is LDWRKR by N */ |
|
|
|
if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) { |
|
ldwrkr = *lda; |
|
} else { |
|
ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n; |
|
} |
|
itau = ir + ldwrkr * *n; |
|
nwork = itau + *n; |
|
|
|
/* Compute A=Q*R */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__1, &ierr); |
|
|
|
/* Copy R to WORK(IR), zeroing out below it */ |
|
|
|
dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); |
|
i__1 = *n - 1; |
|
i__2 = *n - 1; |
|
dlaset_("L", &i__1, &i__2, &c_b227, &c_b227, &work[ir + 1], & |
|
ldwrkr); |
|
|
|
/* Generate Q in A */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork], |
|
&i__1, &ierr); |
|
ie = itau; |
|
itauq = ie + *n; |
|
itaup = itauq + *n; |
|
nwork = itaup + *n; |
|
|
|
/* Bidiagonalize R in VT, copying result to WORK(IR) */ |
|
/* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__1, &ierr); |
|
|
|
/* WORK(IU) is N by N */ |
|
|
|
iu = nwork; |
|
nwork = iu + *n * *n; |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in WORK(IU) and computing right */ |
|
/* singular vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need N+N*N+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite WORK(IU) by left singular vectors of R */ |
|
/* and VT by right singular vectors of R */ |
|
/* (Workspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[ |
|
itauq], &work[iu], n, &work[nwork], &i__1, &ierr); |
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & |
|
ierr); |
|
|
|
/* Multiply Q in A by left singular vectors of R in */ |
|
/* WORK(IU), storing result in WORK(IR) and copying to A */ |
|
/* (Workspace: need 2*N*N, prefer N*N+M*N) */ |
|
|
|
i__1 = *m; |
|
i__2 = ldwrkr; |
|
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += |
|
i__2) { |
|
/* Computing MIN */ |
|
i__3 = *m - i__ + 1; |
|
chunk = min(i__3,ldwrkr); |
|
dgemm_("N", "N", &chunk, n, n, &c_b248, &a[i__ + a_dim1], |
|
lda, &work[iu], n, &c_b227, &work[ir], &ldwrkr); |
|
dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + |
|
a_dim1], lda); |
|
/* L10: */ |
|
} |
|
|
|
} else if (wntqs) { |
|
|
|
/* Path 3 (M much larger than N, JOBZ='S') */ |
|
/* N left singular vectors to be computed in U and */ |
|
/* N right singular vectors to be computed in VT */ |
|
|
|
ir = 1; |
|
|
|
/* WORK(IR) is N by N */ |
|
|
|
ldwrkr = *n; |
|
itau = ir + ldwrkr * *n; |
|
nwork = itau + *n; |
|
|
|
/* Compute A=Q*R */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__2, &ierr); |
|
|
|
/* Copy R to WORK(IR), zeroing out below it */ |
|
|
|
dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); |
|
i__2 = *n - 1; |
|
i__1 = *n - 1; |
|
dlaset_("L", &i__2, &i__1, &c_b227, &c_b227, &work[ir + 1], & |
|
ldwrkr); |
|
|
|
/* Generate Q in A */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork], |
|
&i__2, &ierr); |
|
ie = itau; |
|
itauq = ie + *n; |
|
itaup = itauq + *n; |
|
nwork = itaup + *n; |
|
|
|
/* Bidiagonalize R in WORK(IR) */ |
|
/* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__2, &ierr); |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagoal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need N+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite U by left singular vectors of R and VT */ |
|
/* by right singular vectors of R */ |
|
/* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & |
|
ierr); |
|
|
|
/* Multiply Q in A by left singular vectors of R in */ |
|
/* WORK(IR), storing result in U */ |
|
/* (Workspace: need N*N) */ |
|
|
|
dlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr); |
|
dgemm_("N", "N", m, n, n, &c_b248, &a[a_offset], lda, &work[ |
|
ir], &ldwrkr, &c_b227, &u[u_offset], ldu); |
|
|
|
} else if (wntqa) { |
|
|
|
/* Path 4 (M much larger than N, JOBZ='A') */ |
|
/* M left singular vectors to be computed in U and */ |
|
/* N right singular vectors to be computed in VT */ |
|
|
|
iu = 1; |
|
|
|
/* WORK(IU) is N by N */ |
|
|
|
ldwrku = *n; |
|
itau = iu + ldwrku * *n; |
|
nwork = itau + *n; |
|
|
|
/* Compute A=Q*R, copying result to U */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__2, &ierr); |
|
dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); |
|
|
|
/* Generate Q in U */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
i__2 = *lwork - nwork + 1; |
|
dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork], |
|
&i__2, &ierr); |
|
|
|
/* Produce R in A, zeroing out other entries */ |
|
|
|
i__2 = *n - 1; |
|
i__1 = *n - 1; |
|
dlaset_("L", &i__2, &i__1, &c_b227, &c_b227, &a[a_dim1 + 2], |
|
lda); |
|
ie = itau; |
|
itauq = ie + *n; |
|
itaup = itauq + *n; |
|
nwork = itaup + *n; |
|
|
|
/* Bidiagonalize R in A */ |
|
/* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__2, &ierr); |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in WORK(IU) and computing right */ |
|
/* singular vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need N+N*N+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite WORK(IU) by left singular vectors of R and VT */ |
|
/* by right singular vectors of R */ |
|
/* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[ |
|
itauq], &work[iu], &ldwrku, &work[nwork], &i__2, & |
|
ierr); |
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & |
|
ierr); |
|
|
|
/* Multiply Q in U by left singular vectors of R in */ |
|
/* WORK(IU), storing result in A */ |
|
/* (Workspace: need N*N) */ |
|
|
|
dgemm_("N", "N", m, n, n, &c_b248, &u[u_offset], ldu, &work[ |
|
iu], &ldwrku, &c_b227, &a[a_offset], lda); |
|
|
|
/* Copy left singular vectors of A from A to U */ |
|
|
|
dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* M .LT. MNTHR */ |
|
|
|
/* Path 5 (M at least N, but not much larger) */ |
|
/* Reduce to bidiagonal form without QR decomposition */ |
|
|
|
ie = 1; |
|
itauq = ie + *n; |
|
itaup = itauq + *n; |
|
nwork = itaup + *n; |
|
|
|
/* Bidiagonalize A */ |
|
/* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
|
work[itaup], &work[nwork], &i__2, &ierr); |
|
if (wntqn) { |
|
|
|
/* Perform bidiagonal SVD, only computing singular values */ |
|
/* (Workspace: need N+BDSPAC) */ |
|
|
|
dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1, |
|
dum, idum, &work[nwork], &iwork[1], info); |
|
} else if (wntqo) { |
|
iu = nwork; |
|
if (*lwork >= *m * *n + *n * 3 + bdspac) { |
|
|
|
/* WORK( IU ) is M by N */ |
|
|
|
ldwrku = *m; |
|
nwork = iu + ldwrku * *n; |
|
dlaset_("F", m, n, &c_b227, &c_b227, &work[iu], &ldwrku); |
|
} else { |
|
|
|
/* WORK( IU ) is N by N */ |
|
|
|
ldwrku = *n; |
|
nwork = iu + ldwrku * *n; |
|
|
|
/* WORK(IR) is LDWRKR by N */ |
|
|
|
ir = nwork; |
|
ldwrkr = (*lwork - *n * *n - *n * 3) / *n; |
|
} |
|
nwork = iu + ldwrku * *n; |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in WORK(IU) and computing right */ |
|
/* singular vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need N+N*N+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, & |
|
vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[ |
|
1], info); |
|
|
|
/* Overwrite VT by right singular vectors of A */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & |
|
ierr); |
|
|
|
if (*lwork >= *m * *n + *n * 3 + bdspac) { |
|
|
|
/* Overwrite WORK(IU) by left singular vectors of A */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[ |
|
itauq], &work[iu], &ldwrku, &work[nwork], &i__2, & |
|
ierr); |
|
|
|
/* Copy left singular vectors of A from WORK(IU) to A */ |
|
|
|
dlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda); |
|
} else { |
|
|
|
/* Generate Q in A */ |
|
/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], & |
|
work[nwork], &i__2, &ierr); |
|
|
|
/* Multiply Q in A by left singular vectors of */ |
|
/* bidiagonal matrix in WORK(IU), storing result in */ |
|
/* WORK(IR) and copying to A */ |
|
/* (Workspace: need 2*N*N, prefer N*N+M*N) */ |
|
|
|
i__2 = *m; |
|
i__1 = ldwrkr; |
|
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += |
|
i__1) { |
|
/* Computing MIN */ |
|
i__3 = *m - i__ + 1; |
|
chunk = min(i__3,ldwrkr); |
|
dgemm_("N", "N", &chunk, n, n, &c_b248, &a[i__ + |
|
a_dim1], lda, &work[iu], &ldwrku, &c_b227, & |
|
work[ir], &ldwrkr); |
|
dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + |
|
a_dim1], lda); |
|
/* L20: */ |
|
} |
|
} |
|
|
|
} else if (wntqs) { |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need N+BDSPAC) */ |
|
|
|
dlaset_("F", m, n, &c_b227, &c_b227, &u[u_offset], ldu); |
|
dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite U by left singular vectors of A and VT */ |
|
/* by right singular vectors of A */ |
|
/* (Workspace: need 3*N, prefer 2*N+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); |
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & |
|
ierr); |
|
} else if (wntqa) { |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need N+BDSPAC) */ |
|
|
|
dlaset_("F", m, m, &c_b227, &c_b227, &u[u_offset], ldu); |
|
dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Set the right corner of U to identity matrix */ |
|
|
|
if (*m > *n) { |
|
i__1 = *m - *n; |
|
i__2 = *m - *n; |
|
dlaset_("F", &i__1, &i__2, &c_b227, &c_b248, &u[*n + 1 + ( |
|
*n + 1) * u_dim1], ldu); |
|
} |
|
|
|
/* Overwrite U by left singular vectors of A and VT */ |
|
/* by right singular vectors of A */ |
|
/* (Workspace: need N*N+2*N+M, prefer N*N+2*N+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); |
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & |
|
ierr); |
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* A has more columns than rows. If A has sufficiently more */ |
|
/* columns than rows, first reduce using the LQ decomposition (if */ |
|
/* sufficient workspace available) */ |
|
|
|
if (*n >= mnthr) { |
|
|
|
if (wntqn) { |
|
|
|
/* Path 1t (N much larger than M, JOBZ='N') */ |
|
/* No singular vectors to be computed */ |
|
|
|
itau = 1; |
|
nwork = itau + *m; |
|
|
|
/* Compute A=L*Q */ |
|
/* (Workspace: need 2*M, prefer M+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__1, &ierr); |
|
|
|
/* Zero out above L */ |
|
|
|
i__1 = *m - 1; |
|
i__2 = *m - 1; |
|
dlaset_("U", &i__1, &i__2, &c_b227, &c_b227, &a[(a_dim1 << 1) |
|
+ 1], lda); |
|
ie = 1; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize L in A */ |
|
/* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__1, &ierr); |
|
nwork = ie + *m; |
|
|
|
/* Perform bidiagonal SVD, computing singular values only */ |
|
/* (Workspace: need M+BDSPAC) */ |
|
|
|
dbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1, |
|
dum, idum, &work[nwork], &iwork[1], info); |
|
|
|
} else if (wntqo) { |
|
|
|
/* Path 2t (N much larger than M, JOBZ='O') */ |
|
/* M right singular vectors to be overwritten on A and */ |
|
/* M left singular vectors to be computed in U */ |
|
|
|
ivt = 1; |
|
|
|
/* IVT is M by M */ |
|
|
|
il = ivt + *m * *m; |
|
if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) { |
|
|
|
/* WORK(IL) is M by N */ |
|
|
|
ldwrkl = *m; |
|
chunk = *n; |
|
} else { |
|
ldwrkl = *m; |
|
chunk = (*lwork - *m * *m) / *m; |
|
} |
|
itau = il + ldwrkl * *m; |
|
nwork = itau + *m; |
|
|
|
/* Compute A=L*Q */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__1, &ierr); |
|
|
|
/* Copy L to WORK(IL), zeroing about above it */ |
|
|
|
dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl); |
|
i__1 = *m - 1; |
|
i__2 = *m - 1; |
|
dlaset_("U", &i__1, &i__2, &c_b227, &c_b227, &work[il + |
|
ldwrkl], &ldwrkl); |
|
|
|
/* Generate Q in A */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork], |
|
&i__1, &ierr); |
|
ie = itau; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize L in WORK(IL) */ |
|
/* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__1, &ierr); |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U, and computing right singular */ |
|
/* vectors of bidiagonal matrix in WORK(IVT) */ |
|
/* (Workspace: need M+M*M+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, & |
|
work[ivt], m, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite U by left singular vectors of L and WORK(IVT) */ |
|
/* by right singular vectors of L */ |
|
/* (Workspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); |
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[ |
|
itaup], &work[ivt], m, &work[nwork], &i__1, &ierr); |
|
|
|
/* Multiply right singular vectors of L in WORK(IVT) by Q */ |
|
/* in A, storing result in WORK(IL) and copying to A */ |
|
/* (Workspace: need 2*M*M, prefer M*M+M*N) */ |
|
|
|
i__1 = *n; |
|
i__2 = chunk; |
|
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += |
|
i__2) { |
|
/* Computing MIN */ |
|
i__3 = *n - i__ + 1; |
|
blk = min(i__3,chunk); |
|
dgemm_("N", "N", m, &blk, m, &c_b248, &work[ivt], m, &a[ |
|
i__ * a_dim1 + 1], lda, &c_b227, &work[il], & |
|
ldwrkl); |
|
dlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1 |
|
+ 1], lda); |
|
/* L30: */ |
|
} |
|
|
|
} else if (wntqs) { |
|
|
|
/* Path 3t (N much larger than M, JOBZ='S') */ |
|
/* M right singular vectors to be computed in VT and */ |
|
/* M left singular vectors to be computed in U */ |
|
|
|
il = 1; |
|
|
|
/* WORK(IL) is M by M */ |
|
|
|
ldwrkl = *m; |
|
itau = il + ldwrkl * *m; |
|
nwork = itau + *m; |
|
|
|
/* Compute A=L*Q */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__2, &ierr); |
|
|
|
/* Copy L to WORK(IL), zeroing out above it */ |
|
|
|
dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl); |
|
i__2 = *m - 1; |
|
i__1 = *m - 1; |
|
dlaset_("U", &i__2, &i__1, &c_b227, &c_b227, &work[il + |
|
ldwrkl], &ldwrkl); |
|
|
|
/* Generate Q in A */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork], |
|
&i__2, &ierr); |
|
ie = itau; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize L in WORK(IU), copying result to U */ |
|
/* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__2, &ierr); |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need M+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite U by left singular vectors of L and VT */ |
|
/* by right singular vectors of L */ |
|
/* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); |
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & |
|
ierr); |
|
|
|
/* Multiply right singular vectors of L in WORK(IL) by */ |
|
/* Q in A, storing result in VT */ |
|
/* (Workspace: need M*M) */ |
|
|
|
dlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl); |
|
dgemm_("N", "N", m, n, m, &c_b248, &work[il], &ldwrkl, &a[ |
|
a_offset], lda, &c_b227, &vt[vt_offset], ldvt); |
|
|
|
} else if (wntqa) { |
|
|
|
/* Path 4t (N much larger than M, JOBZ='A') */ |
|
/* N right singular vectors to be computed in VT and */ |
|
/* M left singular vectors to be computed in U */ |
|
|
|
ivt = 1; |
|
|
|
/* WORK(IVT) is M by M */ |
|
|
|
ldwkvt = *m; |
|
itau = ivt + ldwkvt * *m; |
|
nwork = itau + *m; |
|
|
|
/* Compute A=L*Q, copying result to VT */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & |
|
i__2, &ierr); |
|
dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); |
|
|
|
/* Generate Q in VT */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[ |
|
nwork], &i__2, &ierr); |
|
|
|
/* Produce L in A, zeroing out other entries */ |
|
|
|
i__2 = *m - 1; |
|
i__1 = *m - 1; |
|
dlaset_("U", &i__2, &i__1, &c_b227, &c_b227, &a[(a_dim1 << 1) |
|
+ 1], lda); |
|
ie = itau; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize L in A */ |
|
/* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[ |
|
itauq], &work[itaup], &work[nwork], &i__2, &ierr); |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in WORK(IVT) */ |
|
/* (Workspace: need M+M*M+BDSPAC) */ |
|
|
|
dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, & |
|
work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1] |
|
, info); |
|
|
|
/* Overwrite U by left singular vectors of L and WORK(IVT) */ |
|
/* by right singular vectors of L */ |
|
/* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); |
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[ |
|
itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, & |
|
ierr); |
|
|
|
/* Multiply right singular vectors of L in WORK(IVT) by */ |
|
/* Q in VT, storing result in A */ |
|
/* (Workspace: need M*M) */ |
|
|
|
dgemm_("N", "N", m, n, m, &c_b248, &work[ivt], &ldwkvt, &vt[ |
|
vt_offset], ldvt, &c_b227, &a[a_offset], lda); |
|
|
|
/* Copy right singular vectors of A from A to VT */ |
|
|
|
dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* N .LT. MNTHR */ |
|
|
|
/* Path 5t (N greater than M, but not much larger) */ |
|
/* Reduce to bidiagonal form without LQ decomposition */ |
|
|
|
ie = 1; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize A */ |
|
/* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
|
work[itaup], &work[nwork], &i__2, &ierr); |
|
if (wntqn) { |
|
|
|
/* Perform bidiagonal SVD, only computing singular values */ |
|
/* (Workspace: need M+BDSPAC) */ |
|
|
|
dbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1, |
|
dum, idum, &work[nwork], &iwork[1], info); |
|
} else if (wntqo) { |
|
ldwkvt = *m; |
|
ivt = nwork; |
|
if (*lwork >= *m * *n + *m * 3 + bdspac) { |
|
|
|
/* WORK( IVT ) is M by N */ |
|
|
|
dlaset_("F", m, n, &c_b227, &c_b227, &work[ivt], &ldwkvt); |
|
nwork = ivt + ldwkvt * *n; |
|
} else { |
|
|
|
/* WORK( IVT ) is M by M */ |
|
|
|
nwork = ivt + ldwkvt * *m; |
|
il = nwork; |
|
|
|
/* WORK(IL) is M by CHUNK */ |
|
|
|
chunk = (*lwork - *m * *m - *m * 3) / *m; |
|
} |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in WORK(IVT) */ |
|
/* (Workspace: need M*M+BDSPAC) */ |
|
|
|
dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, & |
|
work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1] |
|
, info); |
|
|
|
/* Overwrite U by left singular vectors of A */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); |
|
|
|
if (*lwork >= *m * *n + *m * 3 + bdspac) { |
|
|
|
/* Overwrite WORK(IVT) by left singular vectors of A */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[ |
|
itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, |
|
&ierr); |
|
|
|
/* Copy right singular vectors of A from WORK(IVT) to A */ |
|
|
|
dlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda); |
|
} else { |
|
|
|
/* Generate P**T in A */ |
|
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ |
|
|
|
i__2 = *lwork - nwork + 1; |
|
dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], & |
|
work[nwork], &i__2, &ierr); |
|
|
|
/* Multiply Q in A by right singular vectors of */ |
|
/* bidiagonal matrix in WORK(IVT), storing result in */ |
|
/* WORK(IL) and copying to A */ |
|
/* (Workspace: need 2*M*M, prefer M*M+M*N) */ |
|
|
|
i__2 = *n; |
|
i__1 = chunk; |
|
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += |
|
i__1) { |
|
/* Computing MIN */ |
|
i__3 = *n - i__ + 1; |
|
blk = min(i__3,chunk); |
|
dgemm_("N", "N", m, &blk, m, &c_b248, &work[ivt], & |
|
ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b227, & |
|
work[il], m); |
|
dlacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 + |
|
1], lda); |
|
/* L40: */ |
|
} |
|
} |
|
} else if (wntqs) { |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need M+BDSPAC) */ |
|
|
|
dlaset_("F", m, n, &c_b227, &c_b227, &vt[vt_offset], ldvt); |
|
dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Overwrite U by left singular vectors of A and VT */ |
|
/* by right singular vectors of A */ |
|
/* (Workspace: need 3*M, prefer 2*M+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); |
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & |
|
ierr); |
|
} else if (wntqa) { |
|
|
|
/* Perform bidiagonal SVD, computing left singular vectors */ |
|
/* of bidiagonal matrix in U and computing right singular */ |
|
/* vectors of bidiagonal matrix in VT */ |
|
/* (Workspace: need M+BDSPAC) */ |
|
|
|
dlaset_("F", n, n, &c_b227, &c_b227, &vt[vt_offset], ldvt); |
|
dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[ |
|
vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], |
|
info); |
|
|
|
/* Set the right corner of VT to identity matrix */ |
|
|
|
if (*n > *m) { |
|
i__1 = *n - *m; |
|
i__2 = *n - *m; |
|
dlaset_("F", &i__1, &i__2, &c_b227, &c_b248, &vt[*m + 1 + |
|
(*m + 1) * vt_dim1], ldvt); |
|
} |
|
|
|
/* Overwrite U by left singular vectors of A and VT */ |
|
/* by right singular vectors of A */ |
|
/* (Workspace: need 2*M+N, prefer 2*M+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ |
|
itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); |
|
i__1 = *lwork - nwork + 1; |
|
dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[ |
|
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & |
|
ierr); |
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
/* Undo scaling if necessary */ |
|
|
|
if (iscl == 1) { |
|
if (anrm > bignum) { |
|
dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & |
|
minmn, &ierr); |
|
} |
|
if (anrm < smlnum) { |
|
dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & |
|
minmn, &ierr); |
|
} |
|
} |
|
|
|
/* Return optimal workspace in WORK(1) */ |
|
|
|
work[1] = (doublereal) maxwrk; |
|
|
|
return 0; |
|
|
|
/* End of DGESDD */ |
|
|
|
} /* dgesdd_ */
|
|
|