mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
903 lines
22 KiB
903 lines
22 KiB
/////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
|
// Digital Ltd. LLC |
|
// |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Industrial Light & Magic nor the names of |
|
// its contributors may be used to endorse or promote products derived |
|
// from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
/////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHEULER_H |
|
#define INCLUDED_IMATHEULER_H |
|
|
|
//---------------------------------------------------------------------- |
|
// |
|
// template class Euler<T> |
|
// |
|
// This class represents euler angle orientations. The class |
|
// inherits from Vec3 to it can be freely cast. The additional |
|
// information is the euler priorities rep. This class is |
|
// essentially a rip off of Ken Shoemake's GemsIV code. It has |
|
// been modified minimally to make it more understandable, but |
|
// hardly enough to make it easy to grok completely. |
|
// |
|
// There are 24 possible combonations of Euler angle |
|
// representations of which 12 are common in CG and you will |
|
// probably only use 6 of these which in this scheme are the |
|
// non-relative-non-repeating types. |
|
// |
|
// The representations can be partitioned according to two |
|
// criteria: |
|
// |
|
// 1) Are the angles measured relative to a set of fixed axis |
|
// or relative to each other (the latter being what happens |
|
// when rotation matrices are multiplied together and is |
|
// almost ubiquitous in the cg community) |
|
// |
|
// 2) Is one of the rotations repeated (ala XYX rotation) |
|
// |
|
// When you construct a given representation from scratch you |
|
// must order the angles according to their priorities. So, the |
|
// easiest is a softimage or aerospace (yaw/pitch/roll) ordering |
|
// of ZYX. |
|
// |
|
// float x_rot = 1; |
|
// float y_rot = 2; |
|
// float z_rot = 3; |
|
// |
|
// Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX); |
|
// -or- |
|
// Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX ); |
|
// |
|
// If instead, the order was YXZ for instance you would have to |
|
// do this: |
|
// |
|
// float x_rot = 1; |
|
// float y_rot = 2; |
|
// float z_rot = 3; |
|
// |
|
// Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); |
|
// -or- |
|
// Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ ); |
|
// |
|
// Notice how the order you put the angles into the three slots |
|
// should correspond to the enum (YXZ) ordering. The input angle |
|
// vector is called the "ijk" vector -- not an "xyz" vector. The |
|
// ijk vector order is the same as the enum. If you treat the |
|
// Euler<> as a Vec<> (which it inherts from) you will find the |
|
// angles are ordered in the same way, i.e.: |
|
// |
|
// V3f v = angles; |
|
// // v.x == y_rot, v.y == x_rot, v.z == z_rot |
|
// |
|
// If you just want the x, y, and z angles stored in a vector in |
|
// that order, you can do this: |
|
// |
|
// V3f v = angles.toXYZVector() |
|
// // v.x == x_rot, v.y == y_rot, v.z == z_rot |
|
// |
|
// If you want to set the Euler with an XYZVector use the |
|
// optional layout argument: |
|
// |
|
// Eulerf angles(x_rot, y_rot, z_rot, |
|
// Eulerf::YXZ, |
|
// Eulerf::XYZLayout); |
|
// |
|
// This is the same as: |
|
// |
|
// Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); |
|
// |
|
// Note that this won't do anything intelligent if you have a |
|
// repeated axis in the euler angles (e.g. XYX) |
|
// |
|
// If you need to use the "relative" versions of these, you will |
|
// need to use the "r" enums. |
|
// |
|
// The units of the rotation angles are assumed to be radians. |
|
// |
|
//---------------------------------------------------------------------- |
|
|
|
|
|
#include "ImathMath.h" |
|
#include "ImathVec.h" |
|
#include "ImathQuat.h" |
|
#include "ImathMatrix.h" |
|
#include "ImathLimits.h" |
|
#include <iostream> |
|
|
|
namespace Imath { |
|
|
|
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
|
// Disable MS VC++ warnings about conversion from double to float |
|
#pragma warning(disable:4244) |
|
#endif |
|
|
|
template <class T> |
|
class Euler : public Vec3<T> |
|
{ |
|
public: |
|
|
|
using Vec3<T>::x; |
|
using Vec3<T>::y; |
|
using Vec3<T>::z; |
|
|
|
enum Order |
|
{ |
|
// |
|
// All 24 possible orderings |
|
// |
|
|
|
XYZ = 0x0101, // "usual" orderings |
|
XZY = 0x0001, |
|
YZX = 0x1101, |
|
YXZ = 0x1001, |
|
ZXY = 0x2101, |
|
ZYX = 0x2001, |
|
|
|
XZX = 0x0011, // first axis repeated |
|
XYX = 0x0111, |
|
YXY = 0x1011, |
|
YZY = 0x1111, |
|
ZYZ = 0x2011, |
|
ZXZ = 0x2111, |
|
|
|
XYZr = 0x2000, // relative orderings -- not common |
|
XZYr = 0x2100, |
|
YZXr = 0x1000, |
|
YXZr = 0x1100, |
|
ZXYr = 0x0000, |
|
ZYXr = 0x0100, |
|
|
|
XZXr = 0x2110, // relative first axis repeated |
|
XYXr = 0x2010, |
|
YXYr = 0x1110, |
|
YZYr = 0x1010, |
|
ZYZr = 0x0110, |
|
ZXZr = 0x0010, |
|
// |||| |
|
// VVVV |
|
// Legend: ABCD |
|
// A -> Initial Axis (0==x, 1==y, 2==z) |
|
// B -> Parity Even (1==true) |
|
// C -> Initial Repeated (1==true) |
|
// D -> Frame Static (1==true) |
|
// |
|
|
|
Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX | |
|
XZX | XYX | YXY | YZY | ZYZ | ZXZ | |
|
XYZr| XZYr| YZXr| YXZr| ZXYr| ZYXr| |
|
XZXr| XYXr| YXYr| YZYr| ZYZr| ZXZr, |
|
|
|
Min = 0x0000, |
|
Max = 0x2111, |
|
Default = XYZ |
|
}; |
|
|
|
enum Axis { X = 0, Y = 1, Z = 2 }; |
|
|
|
enum InputLayout { XYZLayout, IJKLayout }; |
|
|
|
//---------------------------------------------------------------- |
|
// Constructors -- all default to ZYX non-relative ala softimage |
|
// (where there is no argument to specify it) |
|
//---------------------------------------------------------------- |
|
|
|
Euler(); |
|
Euler(const Euler&); |
|
Euler(Order p); |
|
Euler(const Vec3<T> &v, Order o = Default, InputLayout l = IJKLayout); |
|
Euler(T i, T j, T k, Order o = Default, InputLayout l = IJKLayout); |
|
Euler(const Euler<T> &euler, Order newp); |
|
Euler(const Matrix33<T> &, Order o = Default); |
|
Euler(const Matrix44<T> &, Order o = Default); |
|
|
|
//--------------------------------- |
|
// Algebraic functions/ Operators |
|
//--------------------------------- |
|
|
|
const Euler<T>& operator= (const Euler<T>&); |
|
const Euler<T>& operator= (const Vec3<T>&); |
|
|
|
//-------------------------------------------------------- |
|
// Set the euler value |
|
// This does NOT convert the angles, but setXYZVector() |
|
// does reorder the input vector. |
|
//-------------------------------------------------------- |
|
|
|
static bool legal(Order); |
|
|
|
void setXYZVector(const Vec3<T> &); |
|
|
|
Order order() const; |
|
void setOrder(Order); |
|
|
|
void set(Axis initial, |
|
bool relative, |
|
bool parityEven, |
|
bool firstRepeats); |
|
|
|
//--------------------------------------------------------- |
|
// Conversions, toXYZVector() reorders the angles so that |
|
// the X rotation comes first, followed by the Y and Z |
|
// in cases like XYX ordering, the repeated angle will be |
|
// in the "z" component |
|
//--------------------------------------------------------- |
|
|
|
void extract(const Matrix33<T>&); |
|
void extract(const Matrix44<T>&); |
|
void extract(const Quat<T>&); |
|
|
|
Matrix33<T> toMatrix33() const; |
|
Matrix44<T> toMatrix44() const; |
|
Quat<T> toQuat() const; |
|
Vec3<T> toXYZVector() const; |
|
|
|
//--------------------------------------------------- |
|
// Use this function to unpack angles from ijk form |
|
//--------------------------------------------------- |
|
|
|
void angleOrder(int &i, int &j, int &k) const; |
|
|
|
//--------------------------------------------------- |
|
// Use this function to determine mapping from xyz to ijk |
|
// - reshuffles the xyz to match the order |
|
//--------------------------------------------------- |
|
|
|
void angleMapping(int &i, int &j, int &k) const; |
|
|
|
//---------------------------------------------------------------------- |
|
// |
|
// Utility methods for getting continuous rotations. None of these |
|
// methods change the orientation given by its inputs (or at least |
|
// that is the intent). |
|
// |
|
// angleMod() converts an angle to its equivalent in [-PI, PI] |
|
// |
|
// simpleXYZRotation() adjusts xyzRot so that its components differ |
|
// from targetXyzRot by no more than +-PI |
|
// |
|
// nearestRotation() adjusts xyzRot so that its components differ |
|
// from targetXyzRot by as little as possible. |
|
// Note that xyz here really means ijk, because |
|
// the order must be provided. |
|
// |
|
// makeNear() adjusts "this" Euler so that its components differ |
|
// from target by as little as possible. This method |
|
// might not make sense for Eulers with different order |
|
// and it probably doesn't work for repeated axis and |
|
// relative orderings (TODO). |
|
// |
|
//----------------------------------------------------------------------- |
|
|
|
static float angleMod (T angle); |
|
static void simpleXYZRotation (Vec3<T> &xyzRot, |
|
const Vec3<T> &targetXyzRot); |
|
static void nearestRotation (Vec3<T> &xyzRot, |
|
const Vec3<T> &targetXyzRot, |
|
Order order = XYZ); |
|
|
|
void makeNear (const Euler<T> &target); |
|
|
|
bool frameStatic() const { return _frameStatic; } |
|
bool initialRepeated() const { return _initialRepeated; } |
|
bool parityEven() const { return _parityEven; } |
|
Axis initialAxis() const { return _initialAxis; } |
|
|
|
protected: |
|
|
|
bool _frameStatic : 1; // relative or static rotations |
|
bool _initialRepeated : 1; // init axis repeated as last |
|
bool _parityEven : 1; // "parity of axis permutation" |
|
#if defined _WIN32 || defined _WIN64 |
|
Axis _initialAxis ; // First axis of rotation |
|
#else |
|
Axis _initialAxis : 2; // First axis of rotation |
|
#endif |
|
}; |
|
|
|
|
|
//-------------------- |
|
// Convenient typedefs |
|
//-------------------- |
|
|
|
typedef Euler<float> Eulerf; |
|
typedef Euler<double> Eulerd; |
|
|
|
|
|
//--------------- |
|
// Implementation |
|
//--------------- |
|
|
|
template<class T> |
|
inline void |
|
Euler<T>::angleOrder(int &i, int &j, int &k) const |
|
{ |
|
i = _initialAxis; |
|
j = _parityEven ? (i+1)%3 : (i > 0 ? i-1 : 2); |
|
k = _parityEven ? (i > 0 ? i-1 : 2) : (i+1)%3; |
|
} |
|
|
|
template<class T> |
|
inline void |
|
Euler<T>::angleMapping(int &i, int &j, int &k) const |
|
{ |
|
int m[3]; |
|
|
|
m[_initialAxis] = 0; |
|
m[(_initialAxis+1) % 3] = _parityEven ? 1 : 2; |
|
m[(_initialAxis+2) % 3] = _parityEven ? 2 : 1; |
|
i = m[0]; |
|
j = m[1]; |
|
k = m[2]; |
|
} |
|
|
|
template<class T> |
|
inline void |
|
Euler<T>::setXYZVector(const Vec3<T> &v) |
|
{ |
|
int i,j,k; |
|
angleMapping(i,j,k); |
|
(*this)[i] = v.x; |
|
(*this)[j] = v.y; |
|
(*this)[k] = v.z; |
|
} |
|
|
|
template<class T> |
|
inline Vec3<T> |
|
Euler<T>::toXYZVector() const |
|
{ |
|
int i,j,k; |
|
angleMapping(i,j,k); |
|
return Vec3<T>((*this)[i],(*this)[j],(*this)[k]); |
|
} |
|
|
|
|
|
template<class T> |
|
Euler<T>::Euler() : |
|
Vec3<T>(0,0,0), |
|
_frameStatic(true), |
|
_initialRepeated(false), |
|
_parityEven(true), |
|
_initialAxis(X) |
|
{} |
|
|
|
template<class T> |
|
Euler<T>::Euler(typename Euler<T>::Order p) : |
|
Vec3<T>(0,0,0), |
|
_frameStatic(true), |
|
_initialRepeated(false), |
|
_parityEven(true), |
|
_initialAxis(X) |
|
{ |
|
setOrder(p); |
|
} |
|
|
|
template<class T> |
|
inline Euler<T>::Euler( const Vec3<T> &v, |
|
typename Euler<T>::Order p, |
|
typename Euler<T>::InputLayout l ) |
|
{ |
|
setOrder(p); |
|
if ( l == XYZLayout ) setXYZVector(v); |
|
else { x = v.x; y = v.y; z = v.z; } |
|
} |
|
|
|
template<class T> |
|
inline Euler<T>::Euler(const Euler<T> &euler) |
|
{ |
|
operator=(euler); |
|
} |
|
|
|
template<class T> |
|
inline Euler<T>::Euler(const Euler<T> &euler,Order p) |
|
{ |
|
setOrder(p); |
|
Matrix33<T> M = euler.toMatrix33(); |
|
extract(M); |
|
} |
|
|
|
template<class T> |
|
inline Euler<T>::Euler( T xi, T yi, T zi, |
|
typename Euler<T>::Order p, |
|
typename Euler<T>::InputLayout l) |
|
{ |
|
setOrder(p); |
|
if ( l == XYZLayout ) setXYZVector(Vec3<T>(xi,yi,zi)); |
|
else { x = xi; y = yi; z = zi; } |
|
} |
|
|
|
template<class T> |
|
inline Euler<T>::Euler( const Matrix33<T> &M, typename Euler::Order p ) |
|
{ |
|
setOrder(p); |
|
extract(M); |
|
} |
|
|
|
template<class T> |
|
inline Euler<T>::Euler( const Matrix44<T> &M, typename Euler::Order p ) |
|
{ |
|
setOrder(p); |
|
extract(M); |
|
} |
|
|
|
template<class T> |
|
inline void Euler<T>::extract(const Quat<T> &q) |
|
{ |
|
extract(q.toMatrix33()); |
|
} |
|
|
|
template<class T> |
|
void Euler<T>::extract(const Matrix33<T> &M) |
|
{ |
|
int i,j,k; |
|
angleOrder(i,j,k); |
|
|
|
if (_initialRepeated) |
|
{ |
|
// |
|
// Extract the first angle, x. |
|
// |
|
|
|
x = Math<T>::atan2 (M[j][i], M[k][i]); |
|
|
|
// |
|
// Remove the x rotation from M, so that the remaining |
|
// rotation, N, is only around two axes, and gimbal lock |
|
// cannot occur. |
|
// |
|
|
|
Vec3<T> r (0, 0, 0); |
|
r[i] = (_parityEven? -x: x); |
|
|
|
Matrix44<T> N; |
|
N.rotate (r); |
|
|
|
N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, |
|
M[1][0], M[1][1], M[1][2], 0, |
|
M[2][0], M[2][1], M[2][2], 0, |
|
0, 0, 0, 1); |
|
// |
|
// Extract the other two angles, y and z, from N. |
|
// |
|
|
|
T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); |
|
y = Math<T>::atan2 (sy, N[i][i]); |
|
z = Math<T>::atan2 (N[j][k], N[j][j]); |
|
} |
|
else |
|
{ |
|
// |
|
// Extract the first angle, x. |
|
// |
|
|
|
x = Math<T>::atan2 (M[j][k], M[k][k]); |
|
|
|
// |
|
// Remove the x rotation from M, so that the remaining |
|
// rotation, N, is only around two axes, and gimbal lock |
|
// cannot occur. |
|
// |
|
|
|
Vec3<T> r (0, 0, 0); |
|
r[i] = (_parityEven? -x: x); |
|
|
|
Matrix44<T> N; |
|
N.rotate (r); |
|
|
|
N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, |
|
M[1][0], M[1][1], M[1][2], 0, |
|
M[2][0], M[2][1], M[2][2], 0, |
|
0, 0, 0, 1); |
|
// |
|
// Extract the other two angles, y and z, from N. |
|
// |
|
|
|
T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); |
|
y = Math<T>::atan2 (-N[i][k], cy); |
|
z = Math<T>::atan2 (-N[j][i], N[j][j]); |
|
} |
|
|
|
if (!_parityEven) |
|
*this *= -1; |
|
|
|
if (!_frameStatic) |
|
{ |
|
T t = x; |
|
x = z; |
|
z = t; |
|
} |
|
} |
|
|
|
template<class T> |
|
void Euler<T>::extract(const Matrix44<T> &M) |
|
{ |
|
int i,j,k; |
|
angleOrder(i,j,k); |
|
|
|
if (_initialRepeated) |
|
{ |
|
// |
|
// Extract the first angle, x. |
|
// |
|
|
|
x = Math<T>::atan2 (M[j][i], M[k][i]); |
|
|
|
// |
|
// Remove the x rotation from M, so that the remaining |
|
// rotation, N, is only around two axes, and gimbal lock |
|
// cannot occur. |
|
// |
|
|
|
Vec3<T> r (0, 0, 0); |
|
r[i] = (_parityEven? -x: x); |
|
|
|
Matrix44<T> N; |
|
N.rotate (r); |
|
N = N * M; |
|
|
|
// |
|
// Extract the other two angles, y and z, from N. |
|
// |
|
|
|
T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); |
|
y = Math<T>::atan2 (sy, N[i][i]); |
|
z = Math<T>::atan2 (N[j][k], N[j][j]); |
|
} |
|
else |
|
{ |
|
// |
|
// Extract the first angle, x. |
|
// |
|
|
|
x = Math<T>::atan2 (M[j][k], M[k][k]); |
|
|
|
// |
|
// Remove the x rotation from M, so that the remaining |
|
// rotation, N, is only around two axes, and gimbal lock |
|
// cannot occur. |
|
// |
|
|
|
Vec3<T> r (0, 0, 0); |
|
r[i] = (_parityEven? -x: x); |
|
|
|
Matrix44<T> N; |
|
N.rotate (r); |
|
N = N * M; |
|
|
|
// |
|
// Extract the other two angles, y and z, from N. |
|
// |
|
|
|
T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); |
|
y = Math<T>::atan2 (-N[i][k], cy); |
|
z = Math<T>::atan2 (-N[j][i], N[j][j]); |
|
} |
|
|
|
if (!_parityEven) |
|
*this *= -1; |
|
|
|
if (!_frameStatic) |
|
{ |
|
T t = x; |
|
x = z; |
|
z = t; |
|
} |
|
} |
|
|
|
template<class T> |
|
Matrix33<T> Euler<T>::toMatrix33() const |
|
{ |
|
int i,j,k; |
|
angleOrder(i,j,k); |
|
|
|
Vec3<T> angles; |
|
|
|
if ( _frameStatic ) angles = (*this); |
|
else angles = Vec3<T>(z,y,x); |
|
|
|
if ( !_parityEven ) angles *= -1.0; |
|
|
|
T ci = Math<T>::cos(angles.x); |
|
T cj = Math<T>::cos(angles.y); |
|
T ch = Math<T>::cos(angles.z); |
|
T si = Math<T>::sin(angles.x); |
|
T sj = Math<T>::sin(angles.y); |
|
T sh = Math<T>::sin(angles.z); |
|
|
|
T cc = ci*ch; |
|
T cs = ci*sh; |
|
T sc = si*ch; |
|
T ss = si*sh; |
|
|
|
Matrix33<T> M; |
|
|
|
if ( _initialRepeated ) |
|
{ |
|
M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; |
|
M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; |
|
M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; |
|
} |
|
else |
|
{ |
|
M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; |
|
M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; |
|
M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; |
|
} |
|
|
|
return M; |
|
} |
|
|
|
template<class T> |
|
Matrix44<T> Euler<T>::toMatrix44() const |
|
{ |
|
int i,j,k; |
|
angleOrder(i,j,k); |
|
|
|
Vec3<T> angles; |
|
|
|
if ( _frameStatic ) angles = (*this); |
|
else angles = Vec3<T>(z,y,x); |
|
|
|
if ( !_parityEven ) angles *= -1.0; |
|
|
|
T ci = Math<T>::cos(angles.x); |
|
T cj = Math<T>::cos(angles.y); |
|
T ch = Math<T>::cos(angles.z); |
|
T si = Math<T>::sin(angles.x); |
|
T sj = Math<T>::sin(angles.y); |
|
T sh = Math<T>::sin(angles.z); |
|
|
|
T cc = ci*ch; |
|
T cs = ci*sh; |
|
T sc = si*ch; |
|
T ss = si*sh; |
|
|
|
Matrix44<T> M; |
|
|
|
if ( _initialRepeated ) |
|
{ |
|
M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; |
|
M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; |
|
M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; |
|
} |
|
else |
|
{ |
|
M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; |
|
M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; |
|
M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; |
|
} |
|
|
|
return M; |
|
} |
|
|
|
template<class T> |
|
Quat<T> Euler<T>::toQuat() const |
|
{ |
|
Vec3<T> angles; |
|
int i,j,k; |
|
angleOrder(i,j,k); |
|
|
|
if ( _frameStatic ) angles = (*this); |
|
else angles = Vec3<T>(z,y,x); |
|
|
|
if ( !_parityEven ) angles.y = -angles.y; |
|
|
|
T ti = angles.x*0.5; |
|
T tj = angles.y*0.5; |
|
T th = angles.z*0.5; |
|
T ci = Math<T>::cos(ti); |
|
T cj = Math<T>::cos(tj); |
|
T ch = Math<T>::cos(th); |
|
T si = Math<T>::sin(ti); |
|
T sj = Math<T>::sin(tj); |
|
T sh = Math<T>::sin(th); |
|
T cc = ci*ch; |
|
T cs = ci*sh; |
|
T sc = si*ch; |
|
T ss = si*sh; |
|
|
|
T parity = _parityEven ? 1.0 : -1.0; |
|
|
|
Quat<T> q; |
|
Vec3<T> a; |
|
|
|
if ( _initialRepeated ) |
|
{ |
|
a[i] = cj*(cs + sc); |
|
a[j] = sj*(cc + ss) * parity, |
|
a[k] = sj*(cs - sc); |
|
q.r = cj*(cc - ss); |
|
} |
|
else |
|
{ |
|
a[i] = cj*sc - sj*cs, |
|
a[j] = (cj*ss + sj*cc) * parity, |
|
a[k] = cj*cs - sj*sc; |
|
q.r = cj*cc + sj*ss; |
|
} |
|
|
|
q.v = a; |
|
|
|
return q; |
|
} |
|
|
|
template<class T> |
|
inline bool |
|
Euler<T>::legal(typename Euler<T>::Order order) |
|
{ |
|
return (order & ~Legal) ? false : true; |
|
} |
|
|
|
template<class T> |
|
typename Euler<T>::Order |
|
Euler<T>::order() const |
|
{ |
|
int foo = (_initialAxis == Z ? 0x2000 : (_initialAxis == Y ? 0x1000 : 0)); |
|
|
|
if (_parityEven) foo |= 0x0100; |
|
if (_initialRepeated) foo |= 0x0010; |
|
if (_frameStatic) foo++; |
|
|
|
return (Order)foo; |
|
} |
|
|
|
template<class T> |
|
inline void Euler<T>::setOrder(typename Euler<T>::Order p) |
|
{ |
|
set( p & 0x2000 ? Z : (p & 0x1000 ? Y : X), // initial axis |
|
!(p & 0x1), // static? |
|
!!(p & 0x100), // permutation even? |
|
!!(p & 0x10)); // initial repeats? |
|
} |
|
|
|
template<class T> |
|
void Euler<T>::set(typename Euler<T>::Axis axis, |
|
bool relative, |
|
bool parityEven, |
|
bool firstRepeats) |
|
{ |
|
_initialAxis = axis; |
|
_frameStatic = !relative; |
|
_parityEven = parityEven; |
|
_initialRepeated = firstRepeats; |
|
} |
|
|
|
template<class T> |
|
const Euler<T>& Euler<T>::operator= (const Euler<T> &euler) |
|
{ |
|
x = euler.x; |
|
y = euler.y; |
|
z = euler.z; |
|
_initialAxis = euler._initialAxis; |
|
_frameStatic = euler._frameStatic; |
|
_parityEven = euler._parityEven; |
|
_initialRepeated = euler._initialRepeated; |
|
return *this; |
|
} |
|
|
|
template<class T> |
|
const Euler<T>& Euler<T>::operator= (const Vec3<T> &v) |
|
{ |
|
x = v.x; |
|
y = v.y; |
|
z = v.z; |
|
return *this; |
|
} |
|
|
|
template<class T> |
|
std::ostream& operator << (std::ostream &o, const Euler<T> &euler) |
|
{ |
|
char a[3] = { 'X', 'Y', 'Z' }; |
|
|
|
const char* r = euler.frameStatic() ? "" : "r"; |
|
int i,j,k; |
|
euler.angleOrder(i,j,k); |
|
|
|
if ( euler.initialRepeated() ) k = i; |
|
|
|
return o << "(" |
|
<< euler.x << " " |
|
<< euler.y << " " |
|
<< euler.z << " " |
|
<< a[i] << a[j] << a[k] << r << ")"; |
|
} |
|
|
|
template <class T> |
|
float |
|
Euler<T>::angleMod (T angle) |
|
{ |
|
angle = fmod(T (angle), T (2 * M_PI)); |
|
|
|
if (angle < -M_PI) angle += 2 * M_PI; |
|
if (angle > +M_PI) angle -= 2 * M_PI; |
|
|
|
return angle; |
|
} |
|
|
|
template <class T> |
|
void |
|
Euler<T>::simpleXYZRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot) |
|
{ |
|
Vec3<T> d = xyzRot - targetXyzRot; |
|
xyzRot[0] = targetXyzRot[0] + angleMod(d[0]); |
|
xyzRot[1] = targetXyzRot[1] + angleMod(d[1]); |
|
xyzRot[2] = targetXyzRot[2] + angleMod(d[2]); |
|
} |
|
|
|
template <class T> |
|
void |
|
Euler<T>::nearestRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot, |
|
Order order) |
|
{ |
|
int i,j,k; |
|
Euler<T> e (0,0,0, order); |
|
e.angleOrder(i,j,k); |
|
|
|
simpleXYZRotation(xyzRot, targetXyzRot); |
|
|
|
Vec3<T> otherXyzRot; |
|
otherXyzRot[i] = M_PI+xyzRot[i]; |
|
otherXyzRot[j] = M_PI-xyzRot[j]; |
|
otherXyzRot[k] = M_PI+xyzRot[k]; |
|
|
|
simpleXYZRotation(otherXyzRot, targetXyzRot); |
|
|
|
Vec3<T> d = xyzRot - targetXyzRot; |
|
Vec3<T> od = otherXyzRot - targetXyzRot; |
|
T dMag = d.dot(d); |
|
T odMag = od.dot(od); |
|
|
|
if (odMag < dMag) |
|
{ |
|
xyzRot = otherXyzRot; |
|
} |
|
} |
|
|
|
template <class T> |
|
void |
|
Euler<T>::makeNear (const Euler<T> &target) |
|
{ |
|
Vec3<T> xyzRot = toXYZVector(); |
|
Euler<T> targetSameOrder = Euler<T>(target, order()); |
|
Vec3<T> targetXyz = targetSameOrder.toXYZVector(); |
|
|
|
nearestRotation(xyzRot, targetXyz, order()); |
|
|
|
setXYZVector(xyzRot); |
|
} |
|
|
|
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
|
#pragma warning(default:4244) |
|
#endif |
|
|
|
} // namespace Imath |
|
|
|
|
|
#endif
|
|
|