mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
2.3 KiB
61 lines
2.3 KiB
import sys |
|
import cv |
|
|
|
def hs_histogram(src): |
|
# Convert to HSV |
|
hsv = cv.CreateImage(cv.GetSize(src), 8, 3) |
|
cv.CvtColor(src, hsv, cv.CV_BGR2HSV) |
|
|
|
# Extract the H and S planes |
|
h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1) |
|
s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1) |
|
cv.Split(hsv, h_plane, s_plane, None, None) |
|
planes = [h_plane, s_plane] |
|
|
|
h_bins = 30 |
|
s_bins = 32 |
|
hist_size = [h_bins, s_bins] |
|
# hue varies from 0 (~0 deg red) to 180 (~360 deg red again */ |
|
h_ranges = [0, 180] |
|
# saturation varies from 0 (black-gray-white) to |
|
# 255 (pure spectrum color) |
|
s_ranges = [0, 255] |
|
ranges = [h_ranges, s_ranges] |
|
scale = 10 |
|
hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1) |
|
cv.CalcHist([cv.GetImage(i) for i in planes], hist) |
|
(_, max_value, _, _) = cv.GetMinMaxHistValue(hist) |
|
|
|
hist_img = cv.CreateImage((h_bins*scale, s_bins*scale), 8, 3) |
|
|
|
for h in range(h_bins): |
|
for s in range(s_bins): |
|
bin_val = cv.QueryHistValue_2D(hist, h, s) |
|
intensity = cv.Round(bin_val * 255 / max_value) |
|
cv.Rectangle(hist_img, |
|
(h*scale, s*scale), |
|
((h+1)*scale - 1, (s+1)*scale - 1), |
|
cv.RGB(intensity, intensity, intensity), |
|
cv.CV_FILLED) |
|
return hist_img |
|
|
|
def precornerdetect(image): |
|
# assume that the image is floating-point |
|
corners = cv.CloneMat(image) |
|
cv.PreCornerDetect(image, corners, 3) |
|
dilated_corners = cv.CloneMat(image) |
|
cv.Dilate(corners, dilated_corners, None, 1) |
|
corner_mask = cv.CreateMat(image.rows, image.cols, cv.CV_8UC1) |
|
cv.Sub(corners, dilated_corners, corners) |
|
cv.CmpS(corners, 0, corner_mask, cv.CV_CMP_GE) |
|
return (corners, corner_mask) |
|
|
|
def findstereocorrespondence(image_left, image_right): |
|
# image_left and image_right are the input 8-bit single-channel images |
|
# from the left and the right cameras, respectively |
|
(r, c) = (image_left.rows, image_left.cols) |
|
disparity_left = cv.CreateMat(r, c, cv.CV_16S) |
|
disparity_right = cv.CreateMat(r, c, cv.CV_16S) |
|
state = cv.CreateStereoGCState(16, 2) |
|
cv.FindStereoCorrespondenceGC(image_left, image_right, disparity_left, disparity_right, state, 0) |
|
return (disparity_left, disparity_right)
|
|
|