mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1064 lines
36 KiB
1064 lines
36 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <cmath> |
|
#include <limits> |
|
#include "test_precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
using namespace gpu; |
|
|
|
#define CHECK(pred, err) if (!(pred)) { \ |
|
ts->printf(cvtest::TS::CONSOLE, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \ |
|
ts->set_failed_test_info(err); \ |
|
return; } |
|
|
|
class CV_GpuArithmTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_GpuArithmTest(const char* /*test_name*/, const char* /*test_funcs*/){} |
|
virtual ~CV_GpuArithmTest() {} |
|
|
|
protected: |
|
void run(int); |
|
|
|
int test(int type); |
|
|
|
virtual int test(const Mat& mat1, const Mat& mat2) = 0; |
|
|
|
int CheckNorm(const Mat& m1, const Mat& m2, double eps = 1e-5); |
|
int CheckNorm(const Scalar& s1, const Scalar& s2, double eps = 1e-5); |
|
int CheckNorm(double d1, double d2, double eps = 1e-5); |
|
}; |
|
|
|
int CV_GpuArithmTest::test(int type) |
|
{ |
|
cv::Size sz(200, 200); |
|
cv::Mat mat1(sz, type), mat2(sz, type); |
|
|
|
cv::RNG& rng = ts->get_rng(); |
|
|
|
if (type != CV_32FC1) |
|
{ |
|
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20)); |
|
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20)); |
|
} |
|
else |
|
{ |
|
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(0.1), cv::Scalar::all(1.0)); |
|
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(0.1), cv::Scalar::all(1.0)); |
|
} |
|
|
|
return test(mat1, mat2); |
|
} |
|
|
|
int CV_GpuArithmTest::CheckNorm(const Mat& m1, const Mat& m2, double eps) |
|
{ |
|
double ret = norm(m1, m2, NORM_INF); |
|
|
|
if (ret < eps) |
|
return cvtest::TS::OK; |
|
|
|
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); |
|
return cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
int CV_GpuArithmTest::CheckNorm(const Scalar& s1, const Scalar& s2, double eps) |
|
{ |
|
int ret0 = CheckNorm(s1[0], s2[0], eps), |
|
ret1 = CheckNorm(s1[1], s2[1], eps), |
|
ret2 = CheckNorm(s1[2], s2[2], eps), |
|
ret3 = CheckNorm(s1[3], s2[3], eps); |
|
|
|
return (ret0 == cvtest::TS::OK && ret1 == cvtest::TS::OK && ret2 == cvtest::TS::OK && ret3 == cvtest::TS::OK) ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
int CV_GpuArithmTest::CheckNorm(double d1, double d2, double eps) |
|
{ |
|
double ret = ::fabs(d1 - d2); |
|
|
|
if (ret < eps) |
|
return cvtest::TS::OK; |
|
|
|
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); |
|
return cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
void CV_GpuArithmTest::run( int ) |
|
{ |
|
int testResult = cvtest::TS::OK; |
|
|
|
const int types[] = {CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1}; |
|
const char* type_names[] = {"CV_8UC1 ", "CV_8UC3 ", "CV_8UC4 ", "CV_32FC1"}; |
|
const int type_count = sizeof(types)/sizeof(types[0]); |
|
|
|
//run tests |
|
for (int t = 0; t < type_count; ++t) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Start testing %s", type_names[t]); |
|
|
|
if (cvtest::TS::OK == test(types[t])) |
|
ts->printf(cvtest::TS::LOG, "SUCCESS\n"); |
|
else |
|
{ |
|
ts->printf(cvtest::TS::LOG, "FAIL\n"); |
|
testResult = cvtest::TS::FAIL_MISMATCH; |
|
} |
|
} |
|
|
|
ts->set_failed_test_info(testResult); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Add |
|
|
|
struct CV_GpuNppImageAddTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageAddTest() : CV_GpuArithmTest( "GPU-NppImageAdd", "add" ) {} |
|
|
|
virtual int test(const Mat& mat1, const Mat& mat2) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::add(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::add(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sub |
|
struct CV_GpuNppImageSubtractTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageSubtractTest() : CV_GpuArithmTest( "GPU-NppImageSubtract", "subtract" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::subtract(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::subtract(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// multiply |
|
struct CV_GpuNppImageMultiplyTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMultiplyTest() : CV_GpuArithmTest( "GPU-NppImageMultiply", "multiply" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::multiply(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::multiply(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// divide |
|
struct CV_GpuNppImageDivideTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageDivideTest() : CV_GpuArithmTest( "GPU-NppImageDivide", "divide" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::divide(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::divide(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes, 1.01f); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// transpose |
|
struct CV_GpuNppImageTransposeTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageTransposeTest() : CV_GpuArithmTest( "GPU-NppImageTranspose", "transpose" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::transpose(mat1, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpuRes; |
|
cv::gpu::transpose(gpu1, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// absdiff |
|
struct CV_GpuNppImageAbsdiffTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageAbsdiffTest() : CV_GpuArithmTest( "GPU-NppImageAbsdiff", "absdiff" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::absdiff(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::absdiff(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// compare |
|
struct CV_GpuNppImageCompareTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageCompareTest() : CV_GpuArithmTest( "GPU-NppImageCompare", "compare" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int cmp_codes[] = {CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE}; |
|
const char* cmp_str[] = {"CMP_EQ", "CMP_GT", "CMP_GE", "CMP_LT", "CMP_LE", "CMP_NE"}; |
|
int cmp_num = sizeof(cmp_codes) / sizeof(int); |
|
|
|
int test_res = cvtest::TS::OK; |
|
|
|
for (int i = 0; i < cmp_num; ++i) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nCompare operation: %s\n", cmp_str[i]); |
|
|
|
cv::Mat cpuRes; |
|
cv::compare(mat1, mat2, cpuRes, cmp_codes[i]); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::compare(gpu1, gpu2, gpuRes, cmp_codes[i]); |
|
|
|
if (CheckNorm(cpuRes, gpuRes) != cvtest::TS::OK) |
|
test_res = cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// meanStdDev |
|
struct CV_GpuNppImageMeanStdDevTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMeanStdDevTest() : CV_GpuArithmTest( "GPU-NppImageMeanStdDev", "meanStdDev" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
Scalar cpumean; |
|
Scalar cpustddev; |
|
cv::meanStdDev(mat1, cpumean, cpustddev); |
|
|
|
GpuMat gpu1(mat1); |
|
Scalar gpumean; |
|
Scalar gpustddev; |
|
cv::gpu::meanStdDev(gpu1, gpumean, gpustddev); |
|
|
|
int test_res = cvtest::TS::OK; |
|
|
|
if (CheckNorm(cpumean, gpumean) != cvtest::TS::OK) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nMean FAILED\n"); |
|
test_res = cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
if (CheckNorm(cpustddev, gpustddev) != cvtest::TS::OK) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nStdDev FAILED\n"); |
|
test_res = cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// norm |
|
struct CV_GpuNppImageNormTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageNormTest() : CV_GpuArithmTest( "GPU-NppImageNorm", "norm" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int norms[] = {NORM_INF, NORM_L1, NORM_L2}; |
|
const char* norms_str[] = {"NORM_INF", "NORM_L1", "NORM_L2"}; |
|
int norms_num = sizeof(norms) / sizeof(int); |
|
|
|
int test_res = cvtest::TS::OK; |
|
|
|
for (int i = 0; i < norms_num; ++i) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nNorm type: %s\n", norms_str[i]); |
|
|
|
double cpu_norm = cv::norm(mat1, mat2, norms[i]); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
double gpu_norm = cv::gpu::norm(gpu1, gpu2, norms[i]); |
|
|
|
if (CheckNorm(cpu_norm, gpu_norm) != cvtest::TS::OK) |
|
test_res = cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flip |
|
struct CV_GpuNppImageFlipTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageFlipTest() : CV_GpuArithmTest( "GPU-NppImageFlip", "flip" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int flip_codes[] = {0, 1, -1}; |
|
const char* flip_axis[] = {"X", "Y", "Both"}; |
|
int flip_codes_num = sizeof(flip_codes) / sizeof(int); |
|
|
|
int test_res = cvtest::TS::OK; |
|
|
|
for (int i = 0; i < flip_codes_num; ++i) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nFlip Axis: %s\n", flip_axis[i]); |
|
|
|
Mat cpu_res; |
|
cv::flip(mat1, cpu_res, flip_codes[i]); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu_res; |
|
cv::gpu::flip(gpu1, gpu_res, flip_codes[i]); |
|
|
|
if (CheckNorm(cpu_res, gpu_res) != cvtest::TS::OK) |
|
test_res = cvtest::TS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LUT |
|
struct CV_GpuNppImageLUTTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageLUTTest() : CV_GpuArithmTest( "GPU-NppImageLUT", "LUT" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC3) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat lut(1, 256, CV_8UC1); |
|
cv::RNG& rng = ts->get_rng(); |
|
rng.fill(lut, cv::RNG::UNIFORM, cv::Scalar::all(100), cv::Scalar::all(200)); |
|
|
|
cv::Mat cpuRes; |
|
cv::LUT(mat1, lut, cpuRes); |
|
|
|
cv::gpu::GpuMat gpuRes; |
|
cv::gpu::LUT(GpuMat(mat1), lut, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// exp |
|
struct CV_GpuNppImageExpTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageExpTest() : CV_GpuArithmTest( "GPU-NppImageExp", "exp" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::exp(mat1, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpuRes; |
|
cv::gpu::exp(gpu1, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// log |
|
struct CV_GpuNppImageLogTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageLogTest() : CV_GpuArithmTest( "GPU-NppImageLog", "log" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::log(mat1, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpuRes; |
|
cv::gpu::log(gpu1, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// magnitude |
|
struct CV_GpuNppImageMagnitudeTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMagnitudeTest() : CV_GpuArithmTest( "GPU-NppImageMagnitude", "magnitude" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::magnitude(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::magnitude(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// phase |
|
struct CV_GpuNppImagePhaseTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImagePhaseTest() : CV_GpuArithmTest( "GPU-NppImagePhase", "phase" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::phase(mat1, mat2, cpuRes, true); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::phase(gpu1, gpu2, gpuRes, true); |
|
|
|
return CheckNorm(cpuRes, gpuRes, 0.3f); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cartToPolar |
|
struct CV_GpuNppImageCartToPolarTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageCartToPolarTest() : CV_GpuArithmTest( "GPU-NppImageCartToPolar", "cartToPolar" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuMag, cpuAngle; |
|
cv::cartToPolar(mat1, mat2, cpuMag, cpuAngle); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuMag, gpuAngle; |
|
cv::gpu::cartToPolar(gpu1, gpu2, gpuMag, gpuAngle); |
|
|
|
int magRes = CheckNorm(cpuMag, gpuMag); |
|
int angleRes = CheckNorm(cpuAngle, gpuAngle, 0.005f); |
|
|
|
return magRes == cvtest::TS::OK && angleRes == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// polarToCart |
|
struct CV_GpuNppImagePolarToCartTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImagePolarToCartTest() : CV_GpuArithmTest( "GPU-NppImagePolarToCart", "polarToCart" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t"); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
cv::Mat cpuX, cpuY; |
|
cv::polarToCart(mat1, mat2, cpuX, cpuY); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuX, gpuY; |
|
cv::gpu::polarToCart(gpu1, gpu2, gpuX, gpuY); |
|
|
|
int xRes = CheckNorm(cpuX, gpuX); |
|
int yRes = CheckNorm(cpuY, gpuY); |
|
|
|
return xRes == cvtest::TS::OK && yRes == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Min max |
|
|
|
struct CV_GpuMinMaxTest: public cvtest::BaseTest |
|
{ |
|
CV_GpuMinMaxTest() {} |
|
|
|
cv::gpu::GpuMat buf; |
|
|
|
void run(int) |
|
{ |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
int depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (int depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
int rows = 1 + rand() % 1000; |
|
int cols = 1 + rand() % 1000; |
|
test(rows, cols, 1, depth); |
|
test_masked(rows, cols, 1, depth); |
|
} |
|
} |
|
} |
|
|
|
void test(int rows, int cols, int cn, int depth) |
|
{ |
|
cv::Mat src(rows, cols, CV_MAKE_TYPE(depth, cn)); |
|
cv::RNG& rng = ts->get_rng(); |
|
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
|
|
double minVal, maxVal; |
|
cv::Point minLoc, maxLoc; |
|
|
|
if (depth != CV_8S) |
|
{ |
|
cv::minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc); |
|
} |
|
else |
|
{ |
|
minVal = std::numeric_limits<double>::max(); |
|
maxVal = -std::numeric_limits<double>::max(); |
|
for (int i = 0; i < src.rows; ++i) |
|
for (int j = 0; j < src.cols; ++j) |
|
{ |
|
signed char val = src.at<signed char>(i, j); |
|
if (val < minVal) minVal = val; |
|
if (val > maxVal) maxVal = val; |
|
} |
|
} |
|
|
|
double minVal_, maxVal_; |
|
cv::gpu::minMax(cv::gpu::GpuMat(src), &minVal_, &maxVal_, cv::gpu::GpuMat(), buf); |
|
|
|
if (abs(minVal - minVal_) > 1e-3f) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: minVal=%f minVal_=%f rows=%d cols=%d depth=%d cn=%d\n", minVal, minVal_, rows, cols, depth, cn); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
if (abs(maxVal - maxVal_) > 1e-3f) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: maxVal=%f maxVal_=%f rows=%d cols=%d depth=%d cn=%d\n", maxVal, maxVal_, rows, cols, depth, cn); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
} |
|
|
|
void test_masked(int rows, int cols, int cn, int depth) |
|
{ |
|
cv::Mat src(rows, cols, CV_MAKE_TYPE(depth, cn)); |
|
cv::RNG& rng = ts->get_rng(); |
|
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
|
|
cv::Mat mask(src.size(), CV_8U); |
|
rng.fill(mask, RNG::UNIFORM, Scalar(0), Scalar(2)); |
|
|
|
double minVal, maxVal; |
|
cv::Point minLoc, maxLoc; |
|
|
|
Mat src_ = src.reshape(1); |
|
if (depth != CV_8S) |
|
{ |
|
cv::minMaxLoc(src_, &minVal, &maxVal, &minLoc, &maxLoc, mask); |
|
} |
|
else |
|
{ |
|
// OpenCV's minMaxLoc doesn't support CV_8S type |
|
minVal = std::numeric_limits<double>::max(); |
|
maxVal = -std::numeric_limits<double>::max(); |
|
for (int i = 0; i < src_.rows; ++i) |
|
for (int j = 0; j < src_.cols; ++j) |
|
{ |
|
char val = src_.at<char>(i, j); |
|
if (mask.at<unsigned char>(i, j)) { if (val < minVal) minVal = val; } |
|
if (mask.at<unsigned char>(i, j)) { if (val > maxVal) maxVal = val; } |
|
} |
|
} |
|
|
|
double minVal_, maxVal_; |
|
cv::Point minLoc_, maxLoc_; |
|
cv::gpu::minMax(cv::gpu::GpuMat(src), &minVal_, &maxVal_, cv::gpu::GpuMat(mask), buf); |
|
|
|
if (abs(minVal - minVal_) > 1e-3f) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: minVal=%f minVal_=%f rows=%d cols=%d depth=%d cn=%d\n", minVal, minVal_, rows, cols, depth, cn); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
if (abs(maxVal - maxVal_) > 1e-3f) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: maxVal=%f maxVal_=%f rows=%d cols=%d depth=%d cn=%d\n", maxVal, maxVal_, rows, cols, depth, cn); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
} |
|
}; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Min max loc |
|
|
|
struct CV_GpuMinMaxLocTest: public cvtest::BaseTest |
|
{ |
|
CV_GpuMinMaxLocTest() {} |
|
|
|
GpuMat valbuf, locbuf; |
|
|
|
void run(int) |
|
{ |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
int depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (int depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
int rows = 1, cols = 3; |
|
test(rows, cols, depth); |
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
int rows = 1 + rand() % 1000; |
|
int cols = 1 + rand() % 1000; |
|
test(rows, cols, depth); |
|
} |
|
} |
|
} |
|
|
|
void test(int rows, int cols, int depth) |
|
{ |
|
cv::Mat src(rows, cols, depth); |
|
cv::RNG& rng = ts->get_rng(); |
|
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
|
|
cv::Mat mask(src.size(), CV_8U); |
|
rng.fill(mask, RNG::UNIFORM, Scalar(0), Scalar(2)); |
|
|
|
// At least one of the mask elements must be non zero as OpenCV returns 0 |
|
// in such case, when our implementation returns maximum or minimum value |
|
mask.at<unsigned char>(0, 0) = 1; |
|
|
|
double minVal, maxVal; |
|
cv::Point minLoc, maxLoc; |
|
|
|
if (depth != CV_8S) |
|
cv::minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc, mask); |
|
else |
|
{ |
|
// OpenCV's minMaxLoc doesn't support CV_8S type |
|
minVal = std::numeric_limits<double>::max(); |
|
maxVal = -std::numeric_limits<double>::max(); |
|
for (int i = 0; i < src.rows; ++i) |
|
for (int j = 0; j < src.cols; ++j) |
|
{ |
|
char val = src.at<char>(i, j); |
|
if (mask.at<unsigned char>(i, j)) |
|
{ |
|
if (val < minVal) { minVal = val; minLoc = cv::Point(j, i); } |
|
if (val > maxVal) { maxVal = val; maxLoc = cv::Point(j, i); } |
|
} |
|
} |
|
} |
|
|
|
double minVal_, maxVal_; |
|
cv::Point minLoc_, maxLoc_; |
|
cv::gpu::minMaxLoc(cv::gpu::GpuMat(src), &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::gpu::GpuMat(mask), valbuf, locbuf); |
|
|
|
CHECK(minVal == minVal_, cvtest::TS::FAIL_INVALID_OUTPUT); |
|
CHECK(maxVal == maxVal_, cvtest::TS::FAIL_INVALID_OUTPUT); |
|
CHECK(0 == memcmp(src.ptr(minLoc.y) + minLoc.x * src.elemSize(), src.ptr(minLoc_.y) + minLoc_.x * src.elemSize(), src.elemSize()), |
|
cvtest::TS::FAIL_INVALID_OUTPUT); |
|
CHECK(0 == memcmp(src.ptr(maxLoc.y) + maxLoc.x * src.elemSize(), src.ptr(maxLoc_.y) + maxLoc_.x * src.elemSize(), src.elemSize()), |
|
cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////// |
|
// Count non zero |
|
struct CV_GpuCountNonZeroTest: cvtest::BaseTest |
|
{ |
|
CV_GpuCountNonZeroTest(){} |
|
|
|
void run(int) |
|
{ |
|
int depth_end; |
|
if (cv::gpu::DeviceInfo().supports(cv::gpu::NATIVE_DOUBLE)) |
|
depth_end = CV_64F; |
|
else |
|
depth_end = CV_32F; |
|
for (int depth = CV_8U; depth <= CV_32F; ++depth) |
|
{ |
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
int rows = 1 + rand() % 1000; |
|
int cols = 1 + rand() % 1000; |
|
test(rows, cols, depth); |
|
} |
|
} |
|
} |
|
|
|
void test(int rows, int cols, int depth) |
|
{ |
|
cv::Mat src(rows, cols, depth); |
|
cv::RNG rng; |
|
if (depth == 5) |
|
rng.fill(src, RNG::UNIFORM, Scalar(-1000.f), Scalar(1000.f)); |
|
else if (depth == 6) |
|
rng.fill(src, RNG::UNIFORM, Scalar(-1000.), Scalar(1000.)); |
|
else |
|
for (int i = 0; i < src.rows; ++i) |
|
{ |
|
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i)); |
|
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(256)); |
|
} |
|
|
|
int n_gold = cv::countNonZero(src); |
|
int n = cv::gpu::countNonZero(cv::gpu::GpuMat(src)); |
|
|
|
if (n != n_gold) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%d %d %d %d %d\n", n, n_gold, depth, cols, rows); |
|
n_gold = cv::countNonZero(src); |
|
} |
|
|
|
CHECK(n == n_gold, cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
}; |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// sum |
|
|
|
struct CV_GpuSumTest: cvtest::BaseTest |
|
{ |
|
CV_GpuSumTest() {} |
|
|
|
void run(int) |
|
{ |
|
Mat src; |
|
Scalar a, b; |
|
double max_err = 1e-5; |
|
|
|
int typemax = CV_32F; |
|
for (int type = CV_8U; type <= typemax; ++type) |
|
{ |
|
// |
|
// sum |
|
// |
|
|
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 1), src); |
|
a = sum(src); |
|
b = sum(GpuMat(src)); |
|
if (abs(a[0] - b[0]) > src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "1 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
|
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 2), src); |
|
a = sum(src); |
|
b = sum(GpuMat(src)); |
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) > src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "2 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[1], b[1]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
|
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 3), src); |
|
a = sum(src); |
|
b = sum(GpuMat(src)); |
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])> src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "3 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[2], b[2]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
|
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 4), src); |
|
a = sum(src); |
|
b = sum(GpuMat(src)); |
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) + abs(a[3] - b[3])> src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "4 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[3], b[3]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
|
|
gen(1 + rand() % 500, 1 + rand() % 500, type, src); |
|
a = sum(src); |
|
b = sum(GpuMat(src)); |
|
if (abs(a[0] - b[0]) > src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
|
|
// |
|
// absSum |
|
// |
|
|
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 1), src); |
|
b = absSum(GpuMat(src)); |
|
a = norm(src, NORM_L1); |
|
if (abs(a[0] - b[0]) > src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
|
|
// |
|
// sqrSum |
|
// |
|
|
|
if (type != CV_8S) |
|
{ |
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 1), src); |
|
b = sqrSum(GpuMat(src)); |
|
Mat sqrsrc; |
|
multiply(src, src, sqrsrc); |
|
a = sum(sqrsrc); |
|
if (abs(a[0] - b[0]) > src.size().area() * max_err) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 2), src); |
|
b = sqrSum(GpuMat(src)); |
|
multiply(src, src, sqrsrc); |
|
a = sum(sqrsrc); |
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1])> src.size().area() * max_err * 2) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 3), src); |
|
b = sqrSum(GpuMat(src)); |
|
multiply(src, src, sqrsrc); |
|
a = sum(sqrsrc); |
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])> src.size().area() * max_err * 3) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 4), src); |
|
b = sqrSum(GpuMat(src)); |
|
multiply(src, src, sqrsrc); |
|
a = sum(sqrsrc); |
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) + abs(a[3] - b[3])> src.size().area() * max_err * 4) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void gen(int cols, int rows, int type, Mat& m) |
|
{ |
|
m.create(rows, cols, type); |
|
RNG rng; |
|
rng.fill(m, RNG::UNIFORM, Scalar::all(0), Scalar::all(16)); |
|
|
|
} |
|
}; |
|
|
|
TEST(add, accuracy) { CV_GpuNppImageAddTest test; test.safe_run(); } |
|
TEST(subtract, accuracy) { CV_GpuNppImageSubtractTest test; test.safe_run(); } |
|
TEST(multiply, accuracy) { CV_GpuNppImageMultiplyTest test; test.safe_run(); } |
|
TEST(divide, accuracy) { CV_GpuNppImageDivideTest test; test.safe_run(); } |
|
TEST(transpose, accuracy) { CV_GpuNppImageTransposeTest test; test.safe_run(); } |
|
TEST(absdiff, accuracy) { CV_GpuNppImageAbsdiffTest test; test.safe_run(); } |
|
TEST(compare, accuracy) { CV_GpuNppImageCompareTest test; test.safe_run(); } |
|
TEST(meanStdDev, accuracy) { CV_GpuNppImageMeanStdDevTest test; test.safe_run(); } |
|
TEST(normDiff, accuracy) { CV_GpuNppImageNormTest test; test.safe_run(); } |
|
TEST(flip, accuracy) { CV_GpuNppImageFlipTest test; test.safe_run(); } |
|
TEST(LUT, accuracy) { CV_GpuNppImageLUTTest test; test.safe_run(); } |
|
TEST(exp, accuracy) { CV_GpuNppImageExpTest test; test.safe_run(); } |
|
TEST(log, accuracy) { CV_GpuNppImageLogTest test; test.safe_run(); } |
|
TEST(magnitude, accuracy) { CV_GpuNppImageMagnitudeTest test; test.safe_run(); } |
|
TEST(phase, accuracy) { CV_GpuNppImagePhaseTest test; test.safe_run(); } |
|
TEST(cartToPolar, accuracy) { CV_GpuNppImageCartToPolarTest test; test.safe_run(); } |
|
TEST(polarToCart, accuracy) { CV_GpuNppImagePolarToCartTest test; test.safe_run(); } |
|
TEST(minMax, accuracy) { CV_GpuMinMaxTest test; test.safe_run(); } |
|
TEST(minMaxLoc, accuracy) { CV_GpuMinMaxLocTest test; test.safe_run(); } |
|
TEST(countNonZero, accuracy) { CV_GpuCountNonZeroTest test; test.safe_run(); } |
|
TEST(sum, accuracy) { CV_GpuSumTest test; test.safe_run(); }
|
|
|