Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
531 lines
20 KiB
531 lines
20 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
namespace cv { |
|
namespace ml { |
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
// Random trees // |
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
RTreeParams::RTreeParams() |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
calcVarImportance = false; |
|
nactiveVars = 0; |
|
termCrit = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 50, 0.1); |
|
} |
|
|
|
RTreeParams::RTreeParams(bool _calcVarImportance, |
|
int _nactiveVars, |
|
TermCriteria _termCrit ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
calcVarImportance = _calcVarImportance; |
|
nactiveVars = _nactiveVars; |
|
termCrit = _termCrit; |
|
} |
|
|
|
|
|
class DTreesImplForRTrees CV_FINAL : public DTreesImpl |
|
{ |
|
public: |
|
DTreesImplForRTrees() |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
params.setMaxDepth(5); |
|
params.setMinSampleCount(10); |
|
params.setRegressionAccuracy(0.f); |
|
params.useSurrogates = false; |
|
params.setMaxCategories(10); |
|
params.setCVFolds(0); |
|
params.use1SERule = false; |
|
params.truncatePrunedTree = false; |
|
params.priors = Mat(); |
|
oobError = 0; |
|
} |
|
virtual ~DTreesImplForRTrees() {} |
|
|
|
void clear() CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
DTreesImpl::clear(); |
|
oobError = 0.; |
|
} |
|
|
|
const vector<int>& getActiveVars() CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
RNG &rng = theRNG(); |
|
int i, nvars = (int)allVars.size(), m = (int)activeVars.size(); |
|
for( i = 0; i < nvars; i++ ) |
|
{ |
|
int i1 = rng.uniform(0, nvars); |
|
int i2 = rng.uniform(0, nvars); |
|
std::swap(allVars[i1], allVars[i2]); |
|
} |
|
for( i = 0; i < m; i++ ) |
|
activeVars[i] = allVars[i]; |
|
return activeVars; |
|
} |
|
|
|
void startTraining( const Ptr<TrainData>& trainData, int flags ) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_Assert(!trainData.empty()); |
|
DTreesImpl::startTraining(trainData, flags); |
|
int nvars = w->data->getNVars(); |
|
int i, m = rparams.nactiveVars > 0 ? rparams.nactiveVars : cvRound(std::sqrt((double)nvars)); |
|
m = std::min(std::max(m, 1), nvars); |
|
allVars.resize(nvars); |
|
activeVars.resize(m); |
|
for( i = 0; i < nvars; i++ ) |
|
allVars[i] = varIdx[i]; |
|
} |
|
|
|
void endTraining() CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
DTreesImpl::endTraining(); |
|
vector<int> a, b; |
|
std::swap(allVars, a); |
|
std::swap(activeVars, b); |
|
} |
|
|
|
bool train( const Ptr<TrainData>& trainData, int flags ) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
RNG &rng = theRNG(); |
|
CV_Assert(!trainData.empty()); |
|
startTraining(trainData, flags); |
|
int treeidx, ntrees = (rparams.termCrit.type & TermCriteria::COUNT) != 0 ? |
|
rparams.termCrit.maxCount : 10000; |
|
int i, j, k, vi, vi_, n = (int)w->sidx.size(); |
|
int nclasses = (int)classLabels.size(); |
|
double eps = (rparams.termCrit.type & TermCriteria::EPS) != 0 && |
|
rparams.termCrit.epsilon > 0 ? rparams.termCrit.epsilon : 0.; |
|
vector<int> sidx(n); |
|
vector<uchar> oobmask(n); |
|
vector<int> oobidx; |
|
vector<int> oobperm; |
|
vector<double> oobres(n, 0.); |
|
vector<int> oobcount(n, 0); |
|
vector<int> oobvotes(n*nclasses, 0); |
|
int nvars = w->data->getNVars(); |
|
int nallvars = w->data->getNAllVars(); |
|
const int* vidx = !varIdx.empty() ? &varIdx[0] : 0; |
|
vector<float> samplebuf(nallvars); |
|
Mat samples = w->data->getSamples(); |
|
float* psamples = samples.ptr<float>(); |
|
size_t sstep0 = samples.step1(), sstep1 = 1; |
|
Mat sample0, sample(nallvars, 1, CV_32F, &samplebuf[0]); |
|
int predictFlags = _isClassifier ? (PREDICT_MAX_VOTE + RAW_OUTPUT) : PREDICT_SUM; |
|
|
|
bool calcOOBError = eps > 0 || rparams.calcVarImportance; |
|
double max_response = 0.; |
|
|
|
if( w->data->getLayout() == COL_SAMPLE ) |
|
std::swap(sstep0, sstep1); |
|
|
|
if( !_isClassifier ) |
|
{ |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
double val = std::abs(w->ord_responses[w->sidx[i]]); |
|
max_response = std::max(max_response, val); |
|
} |
|
CV_Assert(fabs(max_response) > 0); |
|
} |
|
|
|
if( rparams.calcVarImportance ) |
|
varImportance.resize(nallvars, 0.f); |
|
|
|
for( treeidx = 0; treeidx < ntrees; treeidx++ ) |
|
{ |
|
for( i = 0; i < n; i++ ) |
|
oobmask[i] = (uchar)1; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
j = rng.uniform(0, n); |
|
sidx[i] = w->sidx[j]; |
|
oobmask[j] = (uchar)0; |
|
} |
|
int root = addTree( sidx ); |
|
if( root < 0 ) |
|
return false; |
|
|
|
if( calcOOBError ) |
|
{ |
|
oobidx.clear(); |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
if( oobmask[i] ) |
|
oobidx.push_back(i); |
|
} |
|
int n_oob = (int)oobidx.size(); |
|
// if there is no out-of-bag samples, we can not compute OOB error |
|
// nor update the variable importance vector; so we proceed to the next tree |
|
if( n_oob == 0 ) |
|
continue; |
|
double ncorrect_responses = 0.; |
|
|
|
oobError = 0.; |
|
for( i = 0; i < n_oob; i++ ) |
|
{ |
|
j = oobidx[i]; |
|
sample = Mat( nallvars, 1, CV_32F, psamples + sstep0*w->sidx[j], sstep1*sizeof(psamples[0]) ); |
|
|
|
double val = predictTrees(Range(treeidx, treeidx+1), sample, predictFlags); |
|
double sample_weight = w->sample_weights[w->sidx[j]]; |
|
if( !_isClassifier ) |
|
{ |
|
oobres[j] += val; |
|
oobcount[j]++; |
|
double true_val = w->ord_responses[w->sidx[j]]; |
|
double a = oobres[j]/oobcount[j] - true_val; |
|
oobError += sample_weight * a*a; |
|
val = (val - true_val)/max_response; |
|
ncorrect_responses += std::exp( -val*val ); |
|
} |
|
else |
|
{ |
|
int ival = cvRound(val); |
|
//Voting scheme to combine OOB errors of each tree |
|
int* votes = &oobvotes[j*nclasses]; |
|
votes[ival]++; |
|
int best_class = 0; |
|
for( k = 1; k < nclasses; k++ ) |
|
if( votes[best_class] < votes[k] ) |
|
best_class = k; |
|
int diff = best_class != w->cat_responses[w->sidx[j]]; |
|
oobError += sample_weight * diff; |
|
ncorrect_responses += diff == 0; |
|
} |
|
} |
|
|
|
oobError /= n_oob; |
|
if( rparams.calcVarImportance && n_oob > 1 ) |
|
{ |
|
Mat sample_clone; |
|
oobperm.resize(n_oob); |
|
for( i = 0; i < n_oob; i++ ) |
|
oobperm[i] = oobidx[i]; |
|
for (i = n_oob - 1; i > 0; --i) //Randomly shuffle indices so we can permute features |
|
{ |
|
int r_i = rng.uniform(0, n_oob); |
|
std::swap(oobperm[i], oobperm[r_i]); |
|
} |
|
|
|
for( vi_ = 0; vi_ < nvars; vi_++ ) |
|
{ |
|
vi = vidx ? vidx[vi_] : vi_; //Ensure that only the user specified predictors are used for training |
|
double ncorrect_responses_permuted = 0; |
|
|
|
for( i = 0; i < n_oob; i++ ) |
|
{ |
|
j = oobidx[i]; |
|
int vj = oobperm[i]; |
|
sample0 = Mat( nallvars, 1, CV_32F, psamples + sstep0*w->sidx[j], sstep1*sizeof(psamples[0]) ); |
|
sample0.copyTo(sample_clone); //create a copy so we don't mess up the original data |
|
sample_clone.at<float>(vi) = psamples[sstep0*w->sidx[vj] + sstep1*vi]; |
|
|
|
double val = predictTrees(Range(treeidx, treeidx+1), sample_clone, predictFlags); |
|
if( !_isClassifier ) |
|
{ |
|
val = (val - w->ord_responses[w->sidx[j]])/max_response; |
|
ncorrect_responses_permuted += exp( -val*val ); |
|
} |
|
else |
|
{ |
|
ncorrect_responses_permuted += cvRound(val) == w->cat_responses[w->sidx[j]]; |
|
} |
|
} |
|
varImportance[vi] += (float)(ncorrect_responses - ncorrect_responses_permuted); |
|
} |
|
} |
|
} |
|
if( calcOOBError && oobError < eps ) |
|
break; |
|
} |
|
|
|
if( rparams.calcVarImportance ) |
|
{ |
|
for( vi_ = 0; vi_ < nallvars; vi_++ ) |
|
varImportance[vi_] = std::max(varImportance[vi_], 0.f); |
|
normalize(varImportance, varImportance, 1., 0, NORM_L1); |
|
} |
|
endTraining(); |
|
return true; |
|
} |
|
|
|
void writeTrainingParams( FileStorage& fs ) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
DTreesImpl::writeTrainingParams(fs); |
|
fs << "nactive_vars" << rparams.nactiveVars; |
|
} |
|
|
|
void write( FileStorage& fs ) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
if( roots.empty() ) |
|
CV_Error( CV_StsBadArg, "RTrees have not been trained" ); |
|
|
|
writeFormat(fs); |
|
writeParams(fs); |
|
|
|
fs << "oob_error" << oobError; |
|
if( !varImportance.empty() ) |
|
fs << "var_importance" << varImportance; |
|
|
|
int k, ntrees = (int)roots.size(); |
|
|
|
fs << "ntrees" << ntrees |
|
<< "trees" << "["; |
|
|
|
for( k = 0; k < ntrees; k++ ) |
|
{ |
|
fs << "{"; |
|
writeTree(fs, roots[k]); |
|
fs << "}"; |
|
} |
|
|
|
fs << "]"; |
|
} |
|
|
|
void readParams( const FileNode& fn ) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
DTreesImpl::readParams(fn); |
|
|
|
FileNode tparams_node = fn["training_params"]; |
|
rparams.nactiveVars = (int)tparams_node["nactive_vars"]; |
|
} |
|
|
|
void read( const FileNode& fn ) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
clear(); |
|
|
|
//int nclasses = (int)fn["nclasses"]; |
|
//int nsamples = (int)fn["nsamples"]; |
|
oobError = (double)fn["oob_error"]; |
|
int ntrees = (int)fn["ntrees"]; |
|
|
|
readVectorOrMat(fn["var_importance"], varImportance); |
|
|
|
readParams(fn); |
|
|
|
FileNode trees_node = fn["trees"]; |
|
FileNodeIterator it = trees_node.begin(); |
|
CV_Assert( ntrees == (int)trees_node.size() ); |
|
|
|
for( int treeidx = 0; treeidx < ntrees; treeidx++, ++it ) |
|
{ |
|
FileNode nfn = (*it)["nodes"]; |
|
readTree(nfn); |
|
} |
|
} |
|
|
|
void getVotes( InputArray input, OutputArray output, int flags ) const |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_Assert( !roots.empty() ); |
|
int nclasses = (int)classLabels.size(), ntrees = (int)roots.size(); |
|
Mat samples = input.getMat(), results; |
|
int i, j, nsamples = samples.rows; |
|
|
|
int predictType = flags & PREDICT_MASK; |
|
if( predictType == PREDICT_AUTO ) |
|
{ |
|
predictType = !_isClassifier || (classLabels.size() == 2 && (flags & RAW_OUTPUT) != 0) ? |
|
PREDICT_SUM : PREDICT_MAX_VOTE; |
|
} |
|
|
|
if( predictType == PREDICT_SUM ) |
|
{ |
|
output.create(nsamples, ntrees, CV_32F); |
|
results = output.getMat(); |
|
for( i = 0; i < nsamples; i++ ) |
|
{ |
|
for( j = 0; j < ntrees; j++ ) |
|
{ |
|
float val = predictTrees( Range(j, j+1), samples.row(i), flags); |
|
results.at<float> (i, j) = val; |
|
} |
|
} |
|
} else |
|
{ |
|
vector<int> votes; |
|
output.create(nsamples+1, nclasses, CV_32S); |
|
results = output.getMat(); |
|
|
|
for ( j = 0; j < nclasses; j++) |
|
{ |
|
results.at<int> (0, j) = classLabels[j]; |
|
} |
|
|
|
for( i = 0; i < nsamples; i++ ) |
|
{ |
|
votes.clear(); |
|
for( j = 0; j < ntrees; j++ ) |
|
{ |
|
int val = (int)predictTrees( Range(j, j+1), samples.row(i), flags); |
|
votes.push_back(val); |
|
} |
|
|
|
for ( j = 0; j < nclasses; j++) |
|
{ |
|
results.at<int> (i+1, j) = (int)std::count(votes.begin(), votes.end(), classLabels[j]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
double getOOBError() const { |
|
return oobError; |
|
} |
|
|
|
RTreeParams rparams; |
|
double oobError; |
|
vector<float> varImportance; |
|
vector<int> allVars, activeVars; |
|
}; |
|
|
|
|
|
class RTreesImpl CV_FINAL : public RTrees |
|
{ |
|
public: |
|
inline bool getCalculateVarImportance() const CV_OVERRIDE { return impl.rparams.calcVarImportance; } |
|
inline void setCalculateVarImportance(bool val) CV_OVERRIDE { impl.rparams.calcVarImportance = val; } |
|
inline int getActiveVarCount() const CV_OVERRIDE { return impl.rparams.nactiveVars; } |
|
inline void setActiveVarCount(int val) CV_OVERRIDE { impl.rparams.nactiveVars = val; } |
|
inline TermCriteria getTermCriteria() const CV_OVERRIDE { return impl.rparams.termCrit; } |
|
inline void setTermCriteria(const TermCriteria& val) CV_OVERRIDE { impl.rparams.termCrit = val; } |
|
|
|
inline int getMaxCategories() const CV_OVERRIDE { return impl.params.getMaxCategories(); } |
|
inline void setMaxCategories(int val) CV_OVERRIDE { impl.params.setMaxCategories(val); } |
|
inline int getMaxDepth() const CV_OVERRIDE { return impl.params.getMaxDepth(); } |
|
inline void setMaxDepth(int val) CV_OVERRIDE { impl.params.setMaxDepth(val); } |
|
inline int getMinSampleCount() const CV_OVERRIDE { return impl.params.getMinSampleCount(); } |
|
inline void setMinSampleCount(int val) CV_OVERRIDE { impl.params.setMinSampleCount(val); } |
|
inline int getCVFolds() const CV_OVERRIDE { return impl.params.getCVFolds(); } |
|
inline void setCVFolds(int val) CV_OVERRIDE { impl.params.setCVFolds(val); } |
|
inline bool getUseSurrogates() const CV_OVERRIDE { return impl.params.getUseSurrogates(); } |
|
inline void setUseSurrogates(bool val) CV_OVERRIDE { impl.params.setUseSurrogates(val); } |
|
inline bool getUse1SERule() const CV_OVERRIDE { return impl.params.getUse1SERule(); } |
|
inline void setUse1SERule(bool val) CV_OVERRIDE { impl.params.setUse1SERule(val); } |
|
inline bool getTruncatePrunedTree() const CV_OVERRIDE { return impl.params.getTruncatePrunedTree(); } |
|
inline void setTruncatePrunedTree(bool val) CV_OVERRIDE { impl.params.setTruncatePrunedTree(val); } |
|
inline float getRegressionAccuracy() const CV_OVERRIDE { return impl.params.getRegressionAccuracy(); } |
|
inline void setRegressionAccuracy(float val) CV_OVERRIDE { impl.params.setRegressionAccuracy(val); } |
|
inline cv::Mat getPriors() const CV_OVERRIDE { return impl.params.getPriors(); } |
|
inline void setPriors(const cv::Mat& val) CV_OVERRIDE { impl.params.setPriors(val); } |
|
inline void getVotes(InputArray input, OutputArray output, int flags) const CV_OVERRIDE {return impl.getVotes(input,output,flags);} |
|
|
|
RTreesImpl() {} |
|
virtual ~RTreesImpl() CV_OVERRIDE {} |
|
|
|
String getDefaultName() const CV_OVERRIDE { return "opencv_ml_rtrees"; } |
|
|
|
bool train( const Ptr<TrainData>& trainData, int flags ) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_Assert(!trainData.empty()); |
|
if (impl.getCVFolds() != 0) |
|
CV_Error(Error::StsBadArg, "Cross validation for RTrees is not implemented"); |
|
return impl.train(trainData, flags); |
|
} |
|
|
|
float predict( InputArray samples, OutputArray results, int flags ) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_CheckEQ(samples.cols(), getVarCount(), ""); |
|
return impl.predict(samples, results, flags); |
|
} |
|
|
|
void write( FileStorage& fs ) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
impl.write(fs); |
|
} |
|
|
|
void read( const FileNode& fn ) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
impl.read(fn); |
|
} |
|
|
|
Mat getVarImportance() const CV_OVERRIDE { return Mat_<float>(impl.varImportance, true); } |
|
int getVarCount() const CV_OVERRIDE { return impl.getVarCount(); } |
|
|
|
bool isTrained() const CV_OVERRIDE { return impl.isTrained(); } |
|
bool isClassifier() const CV_OVERRIDE { return impl.isClassifier(); } |
|
|
|
const vector<int>& getRoots() const CV_OVERRIDE { return impl.getRoots(); } |
|
const vector<Node>& getNodes() const CV_OVERRIDE { return impl.getNodes(); } |
|
const vector<Split>& getSplits() const CV_OVERRIDE { return impl.getSplits(); } |
|
const vector<int>& getSubsets() const CV_OVERRIDE { return impl.getSubsets(); } |
|
double getOOBError() const CV_OVERRIDE { return impl.getOOBError(); } |
|
|
|
|
|
DTreesImplForRTrees impl; |
|
}; |
|
|
|
|
|
Ptr<RTrees> RTrees::create() |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
return makePtr<RTreesImpl>(); |
|
} |
|
|
|
//Function needed for Python and Java wrappers |
|
Ptr<RTrees> RTrees::load(const String& filepath, const String& nodeName) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
return Algorithm::load<RTrees>(filepath, nodeName); |
|
} |
|
|
|
}} |
|
|
|
// End of file.
|
|
|