mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1374 lines
44 KiB
1374 lines
44 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
/****************************************************************************************\ |
|
* split & merge * |
|
\****************************************************************************************/ |
|
|
|
template<typename T> static void |
|
split_( const T* src, T** dst, int len, int cn ) |
|
{ |
|
int k = cn % 4 ? cn % 4 : 4; |
|
int i, j; |
|
if( k == 1 ) |
|
{ |
|
T* dst0 = dst[0]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
dst0[i] = src[j]; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
T *dst0 = dst[0], *dst1 = dst[1]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; |
|
dst1[i] = src[j+1]; |
|
} |
|
} |
|
else if( k == 3 ) |
|
{ |
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; |
|
dst1[i] = src[j+1]; |
|
dst2[i] = src[j+2]; |
|
} |
|
} |
|
else |
|
{ |
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; dst1[i] = src[j+1]; |
|
dst2[i] = src[j+2]; dst3[i] = src[j+3]; |
|
} |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3]; |
|
for( i = 0, j = k; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; dst1[i] = src[j+1]; |
|
dst2[i] = src[j+2]; dst3[i] = src[j+3]; |
|
} |
|
} |
|
} |
|
|
|
template<typename T> static void |
|
merge_( const T** src, T* dst, int len, int cn ) |
|
{ |
|
int k = cn % 4 ? cn % 4 : 4; |
|
int i, j; |
|
if( k == 1 ) |
|
{ |
|
const T* src0 = src[0]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
dst[j] = src0[i]; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
const T *src0 = src[0], *src1 = src[1]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; |
|
dst[j+1] = src1[i]; |
|
} |
|
} |
|
else if( k == 3 ) |
|
{ |
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; |
|
dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; |
|
} |
|
} |
|
else |
|
{ |
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; dst[j+3] = src3[i]; |
|
} |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3]; |
|
for( i = 0, j = k; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; dst[j+3] = src3[i]; |
|
} |
|
} |
|
} |
|
|
|
static void split8u(const uchar* src, uchar** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void split16u(const ushort* src, ushort** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void split32s(const int* src, int** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void split64s(const int64* src, int64** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void merge8u(const uchar** src, uchar* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
static void merge16u(const ushort** src, ushort* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
static void merge32s(const int** src, int* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
static void merge64s(const int64** src, int64* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn); |
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); |
|
|
|
static SplitFunc splitTab[] = |
|
{ |
|
(SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split16u), (SplitFunc)GET_OPTIMIZED(split16u), |
|
(SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split64s), 0 |
|
}; |
|
|
|
static MergeFunc mergeTab[] = |
|
{ |
|
(MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge16u), (MergeFunc)GET_OPTIMIZED(merge16u), |
|
(MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge64s), 0 |
|
}; |
|
|
|
} |
|
|
|
void cv::split(const Mat& src, Mat* mv) |
|
{ |
|
int k, depth = src.depth(), cn = src.channels(); |
|
if( cn == 1 ) |
|
{ |
|
src.copyTo(mv[0]); |
|
return; |
|
} |
|
|
|
SplitFunc func = splitTab[depth]; |
|
CV_Assert( func != 0 ); |
|
|
|
int esz = (int)src.elemSize(), esz1 = (int)src.elemSize1(); |
|
int blocksize0 = (BLOCK_SIZE + esz-1)/esz; |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)(uchar*)_buf; |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &src; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
mv[k].create(src.dims, src.size, depth); |
|
arrays[k+1] = &mv[k]; |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( int j = 0; j < total; j += blocksize ) |
|
{ |
|
int bsz = std::min(total - j, blocksize); |
|
func( ptrs[0], &ptrs[1], bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( k = 0; k < cn; k++ ) |
|
ptrs[k+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void cv::split(InputArray _m, OutputArrayOfArrays _mv) |
|
{ |
|
Mat m = _m.getMat(); |
|
if( m.empty() ) |
|
{ |
|
_mv.release(); |
|
return; |
|
} |
|
CV_Assert( !_mv.fixedType() || CV_MAT_TYPE(_mv.flags) == m.depth() ); |
|
_mv.create(m.channels(), 1, m.depth()); |
|
Mat* dst = &_mv.getMatRef(0); |
|
split(m, dst); |
|
} |
|
|
|
void cv::split(const Mat& src, vector<Mat>& mv) |
|
{ |
|
split(_InputArray(src), _OutputArray(mv)); |
|
} |
|
|
|
void cv::merge(const Mat* mv, size_t n, OutputArray _dst) |
|
{ |
|
CV_Assert( mv && n > 0 ); |
|
|
|
int depth = mv[0].depth(); |
|
bool allch1 = true; |
|
int k, cn = 0; |
|
size_t i; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); |
|
allch1 = allch1 && mv[i].channels() == 1; |
|
cn += mv[i].channels(); |
|
} |
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX ); |
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( n == 1 ) |
|
{ |
|
mv[0].copyTo(dst); |
|
return; |
|
} |
|
|
|
if( !allch1 ) |
|
{ |
|
AutoBuffer<int> pairs(cn*2); |
|
int j, ni=0; |
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni ) |
|
{ |
|
ni = mv[i].channels(); |
|
for( k = 0; k < ni; k++ ) |
|
{ |
|
pairs[(j+k)*2] = j + k; |
|
pairs[(j+k)*2+1] = j + k; |
|
} |
|
} |
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn ); |
|
return; |
|
} |
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); |
|
int blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)(uchar*)_buf; |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &dst; |
|
for( k = 0; k < cn; k++ ) |
|
arrays[k+1] = &mv[k]; |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0); |
|
MergeFunc func = mergeTab[depth]; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( int j = 0; j < total; j += blocksize ) |
|
{ |
|
int bsz = std::min(total - j, blocksize); |
|
func( (const uchar**)&ptrs[1], ptrs[0], bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( int t = 0; t < cn; t++ ) |
|
ptrs[t+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst) |
|
{ |
|
vector<Mat> mv; |
|
_mv.getMatVector(mv); |
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); |
|
} |
|
|
|
void cv::merge(const vector<Mat>& _mv, OutputArray _dst) |
|
{ |
|
merge(_InputArray(_mv), _dst); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Generalized split/merge: mixing channels * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
mixChannels_( const T** src, const int* sdelta, |
|
T** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
int i, k; |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
const T* s = src[k]; |
|
T* d = dst[k]; |
|
int ds = sdelta[k], dd = ddelta[k]; |
|
if( s ) |
|
{ |
|
for( i = 0; i <= len - 2; i += 2, s += ds*2, d += dd*2 ) |
|
{ |
|
T t0 = s[0], t1 = s[ds]; |
|
d[0] = t0; d[dd] = t1; |
|
} |
|
if( i < len ) |
|
d[0] = s[0]; |
|
} |
|
else |
|
{ |
|
for( i = 0; i <= len - 2; i += 2, d += dd*2 ) |
|
d[0] = d[dd] = 0; |
|
if( i < len ) |
|
d[0] = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void mixChannels8u( const uchar** src, const int* sdelta, |
|
uchar** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels16u( const ushort** src, const int* sdelta, |
|
ushort** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels32s( const int** src, const int* sdelta, |
|
int** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels64s( const int64** src, const int* sdelta, |
|
int64** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
typedef void (*MixChannelsFunc)( const uchar** src, const int* sdelta, |
|
uchar** dst, const int* ddelta, int len, int npairs ); |
|
|
|
static MixChannelsFunc mixchTab[] = |
|
{ |
|
(MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u, |
|
(MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s, |
|
(MixChannelsFunc)mixChannels64s, 0 |
|
}; |
|
|
|
} |
|
|
|
void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs ) |
|
{ |
|
if( npairs == 0 ) |
|
return; |
|
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 ); |
|
|
|
size_t i, j, k, esz1 = dst[0].elemSize1(); |
|
int depth = dst[0].depth(); |
|
|
|
AutoBuffer<uchar> buf((nsrcs + ndsts + 1)*(sizeof(Mat*) + sizeof(uchar*)) + npairs*(sizeof(uchar*)*2 + sizeof(int)*6)); |
|
const Mat** arrays = (const Mat**)(uchar*)buf; |
|
uchar** ptrs = (uchar**)(arrays + nsrcs + ndsts); |
|
const uchar** srcs = (const uchar**)(ptrs + nsrcs + ndsts + 1); |
|
uchar** dsts = (uchar**)(srcs + npairs); |
|
int* tab = (int*)(dsts + npairs); |
|
int *sdelta = (int*)(tab + npairs*4), *ddelta = sdelta + npairs; |
|
|
|
for( i = 0; i < nsrcs; i++ ) |
|
arrays[i] = &src[i]; |
|
for( i = 0; i < ndsts; i++ ) |
|
arrays[i + nsrcs] = &dst[i]; |
|
ptrs[nsrcs + ndsts] = 0; |
|
|
|
for( i = 0; i < npairs; i++ ) |
|
{ |
|
int i0 = fromTo[i*2], i1 = fromTo[i*2+1]; |
|
if( i0 >= 0 ) |
|
{ |
|
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ ) |
|
if( i0 < src[j].channels() ) |
|
break; |
|
CV_Assert(j < nsrcs && src[j].depth() == depth); |
|
tab[i*4] = (int)j; tab[i*4+1] = (int)(i0*esz1); |
|
sdelta[i] = src[j].channels(); |
|
} |
|
else |
|
{ |
|
tab[i*4] = (int)(nsrcs + ndsts); tab[i*4+1] = 0; |
|
sdelta[i] = 0; |
|
} |
|
|
|
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ ) |
|
if( i1 < dst[j].channels() ) |
|
break; |
|
CV_Assert(i1 >= 0 && j < ndsts && dst[j].depth() == depth); |
|
tab[i*4+2] = (int)(j + nsrcs); tab[i*4+3] = (int)(i1*esz1); |
|
ddelta[i] = dst[j].channels(); |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts)); |
|
int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1)); |
|
MixChannelsFunc func = mixchTab[depth]; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
srcs[k] = ptrs[tab[k*4]] + tab[k*4+1]; |
|
dsts[k] = ptrs[tab[k*4+2]] + tab[k*4+3]; |
|
} |
|
|
|
for( int t = 0; t < total; t += blocksize ) |
|
{ |
|
int bsz = std::min(total - t, blocksize); |
|
func( srcs, sdelta, dsts, ddelta, bsz, (int)npairs ); |
|
|
|
if( t + blocksize < total ) |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
srcs[k] += blocksize*sdelta[k]*esz1; |
|
dsts[k] += blocksize*ddelta[k]*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void cv::mixChannels(const vector<Mat>& src, vector<Mat>& dst, |
|
const int* fromTo, size_t npairs) |
|
{ |
|
mixChannels(!src.empty() ? &src[0] : 0, src.size(), |
|
!dst.empty() ? &dst[0] : 0, dst.size(), fromTo, npairs); |
|
} |
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputArrayOfArrays dst, |
|
const vector<int>& fromTo) |
|
{ |
|
if(fromTo.empty()) |
|
return; |
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && |
|
src.kind() != _InputArray::STD_VECTOR_VECTOR; |
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && |
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR; |
|
int i; |
|
int nsrc = src_is_mat ? 1 : (int)src.total(); |
|
int ndst = dst_is_mat ? 1 : (int)dst.total(); |
|
|
|
CV_Assert(fromTo.size()%2 == 0 && nsrc > 0 && ndst > 0); |
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst); |
|
Mat* buf = _buf; |
|
for( i = 0; i < nsrc; i++ ) |
|
buf[i] = src.getMat(src_is_mat ? -1 : i); |
|
for( i = 0; i < ndst; i++ ) |
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); |
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, &fromTo[0], fromTo.size()/2); |
|
} |
|
|
|
void cv::extractChannel(InputArray _src, OutputArray _dst, int coi) |
|
{ |
|
Mat src = _src.getMat(); |
|
CV_Assert( 0 <= coi && coi < src.channels() ); |
|
_dst.create(src.dims, &src.size[0], src.depth()); |
|
Mat dst = _dst.getMat(); |
|
int ch[] = { coi, 0 }; |
|
mixChannels(&src, 1, &dst, 1, ch, 1); |
|
} |
|
|
|
void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi) |
|
{ |
|
Mat src = _src.getMat(), dst = _dst.getMat(); |
|
CV_Assert( src.size == dst.size && src.depth() == dst.depth() ); |
|
CV_Assert( 0 <= coi && coi < dst.channels() && src.channels() == 1 ); |
|
int ch[] = { 0, coi }; |
|
mixChannels(&src, 1, &dst, 1, ch, 1); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* convertScale[Abs] * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename DT, typename WT> static void |
|
cvtScaleAbs_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size, |
|
WT scale, WT shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(std::abs(src[x]*scale + shift)); |
|
t1 = saturate_cast<DT>(std::abs(src[x+1]*scale + shift)); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(std::abs(src[x+2]*scale + shift)); |
|
t1 = saturate_cast<DT>(std::abs(src[x+3]*scale + shift)); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(std::abs(src[x]*scale + shift)); |
|
} |
|
} |
|
|
|
|
|
template<typename T, typename DT, typename WT> static void |
|
cvtScale_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size, |
|
WT scale, WT shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(src[x]*scale + shift); |
|
t1 = saturate_cast<DT>(src[x+1]*scale + shift); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(src[x+2]*scale + shift); |
|
t1 = saturate_cast<DT>(src[x+3]*scale + shift); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
|
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
//vz optimized template specialization |
|
template<> void |
|
cvtScale_<short, short, float>( const short* src, size_t sstep, |
|
short* dst, size_t dstep, Size size, |
|
float scale, float shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2) |
|
{ |
|
__m128 scale128 = _mm_set1_ps (scale); |
|
__m128 shift128 = _mm_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x)); |
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4)); |
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16)); |
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16)); |
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128); |
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128); |
|
r0 = _mm_cvtps_epi32(rf0); |
|
r1 = _mm_cvtps_epi32(rf1); |
|
r0 = _mm_packs_epi32(r0, r1); |
|
_mm_storeu_si128((__m128i*)(dst + x), r0); |
|
} |
|
} |
|
#endif |
|
|
|
for(; x < size.width; x++ ) |
|
dst[x] = saturate_cast<short>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
template<> void |
|
cvtScale_<short, int, float>( const short* src, size_t sstep, |
|
int* dst, size_t dstep, Size size, |
|
float scale, float shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
|
|
#if CV_SSE2 |
|
if(USE_SSE2)//~5X |
|
{ |
|
__m128 scale128 = _mm_set1_ps (scale); |
|
__m128 shift128 = _mm_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x)); |
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4)); |
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16)); |
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16)); |
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128); |
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128); |
|
r0 = _mm_cvtps_epi32(rf0); |
|
r1 = _mm_cvtps_epi32(rf1); |
|
|
|
_mm_storeu_si128((__m128i*)(dst + x), r0); |
|
_mm_storeu_si128((__m128i*)(dst + x + 4), r1); |
|
} |
|
} |
|
#endif |
|
|
|
//We will wait Haswell |
|
/* |
|
#if CV_AVX |
|
if(USE_AVX)//2X - bad variant |
|
{ |
|
////TODO:AVX implementation (optimization?) required |
|
__m256 scale256 = _mm256_set1_ps (scale); |
|
__m256 shift256 = _mm256_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m256i buf = _mm256_set_epi32((int)(*(src+x+7)),(int)(*(src+x+6)),(int)(*(src+x+5)),(int)(*(src+x+4)),(int)(*(src+x+3)),(int)(*(src+x+2)),(int)(*(src+x+1)),(int)(*(src+x))); |
|
__m256 r0 = _mm256_add_ps( _mm256_mul_ps(_mm256_cvtepi32_ps (buf), scale256), shift256); |
|
__m256i res = _mm256_cvtps_epi32(r0); |
|
_mm256_storeu_si256 ((__m256i*)(dst+x), res); |
|
} |
|
} |
|
#endif*/ |
|
|
|
for(; x < size.width; x++ ) |
|
dst[x] = saturate_cast<int>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
template<typename T, typename DT> static void |
|
cvt_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(src[x]); |
|
t1 = saturate_cast<DT>(src[x+1]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(src[x+2]); |
|
t1 = saturate_cast<DT>(src[x+3]); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(src[x]); |
|
} |
|
} |
|
|
|
//vz optimized template specialization, test Core_ConvertScale/ElemWiseTest |
|
template<> void |
|
cvt_<float, short>( const float* src, size_t sstep, |
|
short* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2){ |
|
for( ; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128 src128 = _mm_loadu_ps (src + x); |
|
__m128i src_int128 = _mm_cvtps_epi32 (src128); |
|
|
|
src128 = _mm_loadu_ps (src + x + 4); |
|
__m128i src1_int128 = _mm_cvtps_epi32 (src128); |
|
|
|
src1_int128 = _mm_packs_epi32(src_int128, src1_int128); |
|
_mm_storeu_si128((__m128i*)(dst + x),src1_int128); |
|
} |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<short>(src[x]); |
|
} |
|
|
|
} |
|
|
|
|
|
template<typename T> static void |
|
cpy_( const T* src, size_t sstep, T* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
memcpy(dst, src, size.width*sizeof(src[0])); |
|
} |
|
|
|
#define DEF_CVT_SCALE_ABS_FUNC(suffix, tfunc, stype, dtype, wtype) \ |
|
static void cvtScaleAbs##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double* scale) \ |
|
{ \ |
|
tfunc(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ |
|
} |
|
|
|
#define DEF_CVT_SCALE_FUNC(suffix, stype, dtype, wtype) \ |
|
static void cvtScale##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double* scale) \ |
|
{ \ |
|
cvtScale_(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ |
|
} |
|
|
|
|
|
#define DEF_CVT_FUNC(suffix, stype, dtype) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
#define DEF_CPY_FUNC(suffix, stype) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
stype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cpy_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
|
|
DEF_CVT_SCALE_ABS_FUNC(8u, cvtScaleAbs_, uchar, uchar, float); |
|
DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtScaleAbs_, schar, uchar, float); |
|
DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtScaleAbs_, ushort, uchar, float); |
|
DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtScaleAbs_, short, uchar, float); |
|
DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float); |
|
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float); |
|
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float); |
|
|
|
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float); |
|
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float); |
|
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float); |
|
DEF_CVT_SCALE_FUNC(16s8u, short, uchar, float); |
|
DEF_CVT_SCALE_FUNC(32s8u, int, uchar, float); |
|
DEF_CVT_SCALE_FUNC(32f8u, float, uchar, float); |
|
DEF_CVT_SCALE_FUNC(64f8u, double, uchar, float); |
|
|
|
DEF_CVT_SCALE_FUNC(8u8s, uchar, schar, float); |
|
DEF_CVT_SCALE_FUNC(8s, schar, schar, float); |
|
DEF_CVT_SCALE_FUNC(16u8s, ushort, schar, float); |
|
DEF_CVT_SCALE_FUNC(16s8s, short, schar, float); |
|
DEF_CVT_SCALE_FUNC(32s8s, int, schar, float); |
|
DEF_CVT_SCALE_FUNC(32f8s, float, schar, float); |
|
DEF_CVT_SCALE_FUNC(64f8s, double, schar, float); |
|
|
|
DEF_CVT_SCALE_FUNC(8u16u, uchar, ushort, float); |
|
DEF_CVT_SCALE_FUNC(8s16u, schar, ushort, float); |
|
DEF_CVT_SCALE_FUNC(16u, ushort, ushort, float); |
|
DEF_CVT_SCALE_FUNC(16s16u, short, ushort, float); |
|
DEF_CVT_SCALE_FUNC(32s16u, int, ushort, float); |
|
DEF_CVT_SCALE_FUNC(32f16u, float, ushort, float); |
|
DEF_CVT_SCALE_FUNC(64f16u, double, ushort, float); |
|
|
|
DEF_CVT_SCALE_FUNC(8u16s, uchar, short, float); |
|
DEF_CVT_SCALE_FUNC(8s16s, schar, short, float); |
|
DEF_CVT_SCALE_FUNC(16u16s, ushort, short, float); |
|
DEF_CVT_SCALE_FUNC(16s, short, short, float); |
|
DEF_CVT_SCALE_FUNC(32s16s, int, short, float); |
|
DEF_CVT_SCALE_FUNC(32f16s, float, short, float); |
|
DEF_CVT_SCALE_FUNC(64f16s, double, short, float); |
|
|
|
DEF_CVT_SCALE_FUNC(8u32s, uchar, int, float); |
|
DEF_CVT_SCALE_FUNC(8s32s, schar, int, float); |
|
DEF_CVT_SCALE_FUNC(16u32s, ushort, int, float); |
|
DEF_CVT_SCALE_FUNC(16s32s, short, int, float); |
|
DEF_CVT_SCALE_FUNC(32s, int, int, double); |
|
DEF_CVT_SCALE_FUNC(32f32s, float, int, float); |
|
DEF_CVT_SCALE_FUNC(64f32s, double, int, double); |
|
|
|
DEF_CVT_SCALE_FUNC(8u32f, uchar, float, float); |
|
DEF_CVT_SCALE_FUNC(8s32f, schar, float, float); |
|
DEF_CVT_SCALE_FUNC(16u32f, ushort, float, float); |
|
DEF_CVT_SCALE_FUNC(16s32f, short, float, float); |
|
DEF_CVT_SCALE_FUNC(32s32f, int, float, double); |
|
DEF_CVT_SCALE_FUNC(32f, float, float, float); |
|
DEF_CVT_SCALE_FUNC(64f32f, double, float, double); |
|
|
|
DEF_CVT_SCALE_FUNC(8u64f, uchar, double, double); |
|
DEF_CVT_SCALE_FUNC(8s64f, schar, double, double); |
|
DEF_CVT_SCALE_FUNC(16u64f, ushort, double, double); |
|
DEF_CVT_SCALE_FUNC(16s64f, short, double, double); |
|
DEF_CVT_SCALE_FUNC(32s64f, int, double, double); |
|
DEF_CVT_SCALE_FUNC(32f64f, float, double, double); |
|
DEF_CVT_SCALE_FUNC(64f, double, double, double); |
|
|
|
DEF_CPY_FUNC(8u, uchar); |
|
DEF_CVT_FUNC(8s8u, schar, uchar); |
|
DEF_CVT_FUNC(16u8u, ushort, uchar); |
|
DEF_CVT_FUNC(16s8u, short, uchar); |
|
DEF_CVT_FUNC(32s8u, int, uchar); |
|
DEF_CVT_FUNC(32f8u, float, uchar); |
|
DEF_CVT_FUNC(64f8u, double, uchar); |
|
|
|
DEF_CVT_FUNC(8u8s, uchar, schar); |
|
DEF_CVT_FUNC(16u8s, ushort, schar); |
|
DEF_CVT_FUNC(16s8s, short, schar); |
|
DEF_CVT_FUNC(32s8s, int, schar); |
|
DEF_CVT_FUNC(32f8s, float, schar); |
|
DEF_CVT_FUNC(64f8s, double, schar); |
|
|
|
DEF_CVT_FUNC(8u16u, uchar, ushort); |
|
DEF_CVT_FUNC(8s16u, schar, ushort); |
|
DEF_CPY_FUNC(16u, ushort); |
|
DEF_CVT_FUNC(16s16u, short, ushort); |
|
DEF_CVT_FUNC(32s16u, int, ushort); |
|
DEF_CVT_FUNC(32f16u, float, ushort); |
|
DEF_CVT_FUNC(64f16u, double, ushort); |
|
|
|
DEF_CVT_FUNC(8u16s, uchar, short); |
|
DEF_CVT_FUNC(8s16s, schar, short); |
|
DEF_CVT_FUNC(16u16s, ushort, short); |
|
DEF_CVT_FUNC(32s16s, int, short); |
|
DEF_CVT_FUNC(32f16s, float, short); |
|
DEF_CVT_FUNC(64f16s, double, short); |
|
|
|
DEF_CVT_FUNC(8u32s, uchar, int); |
|
DEF_CVT_FUNC(8s32s, schar, int); |
|
DEF_CVT_FUNC(16u32s, ushort, int); |
|
DEF_CVT_FUNC(16s32s, short, int); |
|
DEF_CPY_FUNC(32s, int); |
|
DEF_CVT_FUNC(32f32s, float, int); |
|
DEF_CVT_FUNC(64f32s, double, int); |
|
|
|
DEF_CVT_FUNC(8u32f, uchar, float); |
|
DEF_CVT_FUNC(8s32f, schar, float); |
|
DEF_CVT_FUNC(16u32f, ushort, float); |
|
DEF_CVT_FUNC(16s32f, short, float); |
|
DEF_CVT_FUNC(32s32f, int, float); |
|
DEF_CVT_FUNC(64f32f, double, float); |
|
|
|
DEF_CVT_FUNC(8u64f, uchar, double); |
|
DEF_CVT_FUNC(8s64f, schar, double); |
|
DEF_CVT_FUNC(16u64f, ushort, double); |
|
DEF_CVT_FUNC(16s64f, short, double); |
|
DEF_CVT_FUNC(32s64f, int, double); |
|
DEF_CVT_FUNC(32f64f, float, double); |
|
DEF_CPY_FUNC(64s, int64); |
|
|
|
static BinaryFunc cvtScaleAbsTab[] = |
|
{ |
|
(BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u, |
|
(BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u, |
|
(BinaryFunc)cvtScaleAbs64f8u, 0 |
|
}; |
|
|
|
static BinaryFunc cvtScaleTab[][8] = |
|
{ |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u), |
|
(BinaryFunc)cvtScale64f8u, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s), |
|
(BinaryFunc)cvtScale64f8s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u), |
|
(BinaryFunc)cvtScale64f16u, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s), |
|
(BinaryFunc)cvtScale64f16s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s), |
|
(BinaryFunc)cvtScale64f32s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f), |
|
(BinaryFunc)cvtScale64f32f, 0 |
|
}, |
|
{ |
|
(BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f, |
|
(BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f, |
|
(BinaryFunc)cvtScale64f, 0 |
|
}, |
|
{ |
|
0, 0, 0, 0, 0, 0, 0, 0 |
|
} |
|
}; |
|
|
|
static BinaryFunc cvtTab[][8] = |
|
{ |
|
{ |
|
(BinaryFunc)(cvt8u), (BinaryFunc)GET_OPTIMIZED(cvt8s8u), (BinaryFunc)GET_OPTIMIZED(cvt16u8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8u), (BinaryFunc)GET_OPTIMIZED(cvt32s8u), (BinaryFunc)GET_OPTIMIZED(cvt32f8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8u), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u8s), (BinaryFunc)cvt8u, (BinaryFunc)GET_OPTIMIZED(cvt16u8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8s), (BinaryFunc)GET_OPTIMIZED(cvt32s8s), (BinaryFunc)GET_OPTIMIZED(cvt32f8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16u), (BinaryFunc)GET_OPTIMIZED(cvt8s16u), (BinaryFunc)cvt16u, |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s16u), (BinaryFunc)GET_OPTIMIZED(cvt32s16u), (BinaryFunc)GET_OPTIMIZED(cvt32f16u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16u), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16s), (BinaryFunc)GET_OPTIMIZED(cvt8s16s), (BinaryFunc)GET_OPTIMIZED(cvt16u16s), |
|
(BinaryFunc)cvt16u, (BinaryFunc)GET_OPTIMIZED(cvt32s16s), (BinaryFunc)GET_OPTIMIZED(cvt32f16s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32s), (BinaryFunc)GET_OPTIMIZED(cvt8s32s), (BinaryFunc)GET_OPTIMIZED(cvt16u32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32s), (BinaryFunc)cvt32s, (BinaryFunc)GET_OPTIMIZED(cvt32f32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32f), (BinaryFunc)GET_OPTIMIZED(cvt8s32f), (BinaryFunc)GET_OPTIMIZED(cvt16u32f), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32f), (BinaryFunc)GET_OPTIMIZED(cvt32s32f), (BinaryFunc)cvt32s, |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32f), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u64f), (BinaryFunc)GET_OPTIMIZED(cvt8s64f), (BinaryFunc)GET_OPTIMIZED(cvt16u64f), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s64f), (BinaryFunc)GET_OPTIMIZED(cvt32s64f), (BinaryFunc)GET_OPTIMIZED(cvt32f64f), |
|
(BinaryFunc)(cvt64s), 0 |
|
}, |
|
{ |
|
0, 0, 0, 0, 0, 0, 0, 0 |
|
} |
|
}; |
|
|
|
BinaryFunc getConvertFunc(int sdepth, int ddepth) |
|
{ |
|
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; |
|
} |
|
|
|
BinaryFunc getConvertScaleFunc(int sdepth, int ddepth) |
|
{ |
|
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; |
|
} |
|
|
|
} |
|
|
|
void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) |
|
{ |
|
Mat src = _src.getMat(); |
|
int cn = src.channels(); |
|
double scale[] = {alpha, beta}; |
|
_dst.create( src.dims, src.size, CV_8UC(cn) ); |
|
Mat dst = _dst.getMat(); |
|
BinaryFunc func = cvtScaleAbsTab[src.depth()]; |
|
CV_Assert( func != 0 ); |
|
|
|
if( src.dims <= 2 ) |
|
{ |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale ); |
|
} |
|
else |
|
{ |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)it.size*cn, 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale ); |
|
} |
|
} |
|
|
|
void cv::Mat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const |
|
{ |
|
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON; |
|
|
|
if( _type < 0 ) |
|
_type = _dst.fixedType() ? _dst.type() : type(); |
|
else |
|
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels()); |
|
|
|
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type); |
|
if( sdepth == ddepth && noScale ) |
|
{ |
|
copyTo(_dst); |
|
return; |
|
} |
|
|
|
Mat src = *this; |
|
|
|
BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth); |
|
double scale[] = {alpha, beta}; |
|
int cn = channels(); |
|
CV_Assert( func != 0 ); |
|
|
|
if( dims <= 2 ) |
|
{ |
|
_dst.create( size(), _type ); |
|
Mat dst = _dst.getMat(); |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale ); |
|
} |
|
else |
|
{ |
|
_dst.create( dims, size, _type ); |
|
Mat dst = _dst.getMat(); |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)(it.size*cn), 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* LUT Transform * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
LUT8u_( const uchar* src, const T* lut, T* dst, int len, int cn, int lutcn ) |
|
{ |
|
if( lutcn == 1 ) |
|
{ |
|
for( int i = 0; i < len*cn; i++ ) |
|
dst[i] = lut[src[i]]; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len*cn; i += cn ) |
|
for( int k = 0; k < cn; k++ ) |
|
dst[i+k] = lut[src[i+k]*cn+k]; |
|
} |
|
} |
|
|
|
static void LUT8u_8u( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_8s( const uchar* src, const schar* lut, schar* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_16u( const uchar* src, const ushort* lut, ushort* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_16s( const uchar* src, const short* lut, short* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_32s( const uchar* src, const int* lut, int* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_32f( const uchar* src, const float* lut, float* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_64f( const uchar* src, const double* lut, double* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
typedef void (*LUTFunc)( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn ); |
|
|
|
static LUTFunc lutTab[] = |
|
{ |
|
(LUTFunc)LUT8u_8u, (LUTFunc)LUT8u_8s, (LUTFunc)LUT8u_16u, (LUTFunc)LUT8u_16s, |
|
(LUTFunc)LUT8u_32s, (LUTFunc)LUT8u_32f, (LUTFunc)LUT8u_64f, 0 |
|
}; |
|
|
|
} |
|
|
|
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst, int interpolation ) |
|
{ |
|
Mat src = _src.getMat(), lut = _lut.getMat(); |
|
CV_Assert( interpolation == 0 ); |
|
int cn = src.channels(); |
|
int lutcn = lut.channels(); |
|
|
|
CV_Assert( (lutcn == cn || lutcn == 1) && |
|
lut.total() == 256 && lut.isContinuous() && |
|
(src.depth() == CV_8U || src.depth() == CV_8S) ); |
|
_dst.create( src.dims, src.size, CV_MAKETYPE(lut.depth(), cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
LUTFunc func = lutTab[lut.depth()]; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)it.size; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], lut.data, ptrs[1], len, cn, lutcn); |
|
} |
|
|
|
|
|
void cv::normalize( InputArray _src, OutputArray _dst, double a, double b, |
|
int norm_type, int rtype, InputArray _mask ) |
|
{ |
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
|
|
double scale = 1, shift = 0; |
|
if( norm_type == CV_MINMAX ) |
|
{ |
|
double smin = 0, smax = 0; |
|
double dmin = MIN( a, b ), dmax = MAX( a, b ); |
|
minMaxLoc( _src, &smin, &smax, 0, 0, mask ); |
|
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0); |
|
shift = dmin - smin*scale; |
|
} |
|
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C ) |
|
{ |
|
scale = norm( src, norm_type, mask ); |
|
scale = scale > DBL_EPSILON ? a/scale : 0.; |
|
shift = 0; |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" ); |
|
|
|
if( rtype < 0 ) |
|
rtype = _dst.fixedType() ? _dst.depth() : src.depth(); |
|
|
|
_dst.create(src.dims, src.size, CV_MAKETYPE(rtype, src.channels())); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( !mask.data ) |
|
src.convertTo( dst, rtype, scale, shift ); |
|
else |
|
{ |
|
Mat temp; |
|
src.convertTo( temp, rtype, scale, shift ); |
|
temp.copyTo( dst, mask ); |
|
} |
|
} |
|
|
|
CV_IMPL void |
|
cvSplit( const void* srcarr, void* dstarr0, void* dstarr1, void* dstarr2, void* dstarr3 ) |
|
{ |
|
void* dptrs[] = { dstarr0, dstarr1, dstarr2, dstarr3 }; |
|
cv::Mat src = cv::cvarrToMat(srcarr); |
|
int i, j, nz = 0; |
|
for( i = 0; i < 4; i++ ) |
|
nz += dptrs[i] != 0; |
|
CV_Assert( nz > 0 ); |
|
cv::vector<cv::Mat> dvec(nz); |
|
cv::vector<int> pairs(nz*2); |
|
|
|
for( i = j = 0; i < 4; i++ ) |
|
{ |
|
if( dptrs[i] != 0 ) |
|
{ |
|
dvec[j] = cv::cvarrToMat(dptrs[i]); |
|
CV_Assert( dvec[j].size() == src.size() ); |
|
CV_Assert( dvec[j].depth() == src.depth() ); |
|
CV_Assert( dvec[j].channels() == 1 ); |
|
CV_Assert( i < src.channels() ); |
|
pairs[j*2] = i; |
|
pairs[j*2+1] = j; |
|
j++; |
|
} |
|
} |
|
if( nz == src.channels() ) |
|
cv::split( src, dvec ); |
|
else |
|
{ |
|
cv::mixChannels( &src, 1, &dvec[0], nz, &pairs[0], nz ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMerge( const void* srcarr0, const void* srcarr1, const void* srcarr2, |
|
const void* srcarr3, void* dstarr ) |
|
{ |
|
const void* sptrs[] = { srcarr0, srcarr1, srcarr2, srcarr3 }; |
|
cv::Mat dst = cv::cvarrToMat(dstarr); |
|
int i, j, nz = 0; |
|
for( i = 0; i < 4; i++ ) |
|
nz += sptrs[i] != 0; |
|
CV_Assert( nz > 0 ); |
|
cv::vector<cv::Mat> svec(nz); |
|
cv::vector<int> pairs(nz*2); |
|
|
|
for( i = j = 0; i < 4; i++ ) |
|
{ |
|
if( sptrs[i] != 0 ) |
|
{ |
|
svec[j] = cv::cvarrToMat(sptrs[i]); |
|
CV_Assert( svec[j].size == dst.size && |
|
svec[j].depth() == dst.depth() && |
|
svec[j].channels() == 1 && i < dst.channels() ); |
|
pairs[j*2] = j; |
|
pairs[j*2+1] = i; |
|
j++; |
|
} |
|
} |
|
|
|
if( nz == dst.channels() ) |
|
cv::merge( svec, dst ); |
|
else |
|
{ |
|
cv::mixChannels( &svec[0], nz, &dst, 1, &pairs[0], nz ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMixChannels( const CvArr** src, int src_count, |
|
CvArr** dst, int dst_count, |
|
const int* from_to, int pair_count ) |
|
{ |
|
cv::AutoBuffer<cv::Mat, 32> buf(src_count + dst_count); |
|
|
|
int i; |
|
for( i = 0; i < src_count; i++ ) |
|
buf[i] = cv::cvarrToMat(src[i]); |
|
for( i = 0; i < dst_count; i++ ) |
|
buf[i+src_count] = cv::cvarrToMat(dst[i]); |
|
cv::mixChannels(&buf[0], src_count, &buf[src_count], dst_count, from_to, pair_count); |
|
} |
|
|
|
CV_IMPL void |
|
cvConvertScaleAbs( const void* srcarr, void* dstarr, |
|
double scale, double shift ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
CV_Assert( src.size == dst.size && dst.type() == CV_8UC(src.channels())); |
|
cv::convertScaleAbs( src, dst, scale, shift ); |
|
} |
|
|
|
CV_IMPL void |
|
cvConvertScale( const void* srcarr, void* dstarr, |
|
double scale, double shift ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() ); |
|
src.convertTo(dst, dst.type(), scale, shift); |
|
} |
|
|
|
CV_IMPL void cvLUT( const void* srcarr, void* dstarr, const void* lutarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), lut = cv::cvarrToMat(lutarr); |
|
|
|
CV_Assert( dst.size() == src.size() && dst.type() == CV_MAKETYPE(lut.depth(), src.channels()) ); |
|
cv::LUT( src, lut, dst ); |
|
} |
|
|
|
CV_IMPL void cvNormalize( const CvArr* srcarr, CvArr* dstarr, |
|
double a, double b, int norm_type, const CvArr* maskarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
CV_Assert( dst.size() == src.size() && src.channels() == dst.channels() ); |
|
cv::normalize( src, dst, a, b, norm_type, dst.type(), mask ); |
|
} |
|
|
|
/* End of file. */ |