mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
378 lines
13 KiB
378 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma jin@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
__kernel void centeredGradientKernel(__global const float* src_ptr, int src_col, int src_row, int src_step, |
|
__global float* dx, __global float* dy, int d_step) |
|
{ |
|
int x = get_global_id(0); |
|
int y = get_global_id(1); |
|
|
|
if((x < src_col)&&(y < src_row)) |
|
{ |
|
int src_x1 = (x + 1) < (src_col -1)? (x + 1) : (src_col - 1); |
|
int src_x2 = (x - 1) > 0 ? (x -1) : 0; |
|
dx[y * d_step+ x] = 0.5f * (src_ptr[y * src_step + src_x1] - src_ptr[y * src_step+ src_x2]); |
|
|
|
int src_y1 = (y+1) < (src_row - 1) ? (y + 1) : (src_row - 1); |
|
int src_y2 = (y - 1) > 0 ? (y - 1) : 0; |
|
dy[y * d_step+ x] = 0.5f * (src_ptr[src_y1 * src_step + x] - src_ptr[src_y2 * src_step+ x]); |
|
} |
|
|
|
} |
|
|
|
inline float bicubicCoeff(float x_) |
|
{ |
|
|
|
float x = fabs(x_); |
|
if (x <= 1.0f) |
|
return x * x * (1.5f * x - 2.5f) + 1.0f; |
|
else if (x < 2.0f) |
|
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; |
|
else |
|
return 0.0f; |
|
} |
|
|
|
__kernel void warpBackwardKernel(__global const float* I0, int I0_step, int I0_col, int I0_row, |
|
image2d_t tex_I1, image2d_t tex_I1x, image2d_t tex_I1y, |
|
__global const float* u1, int u1_step, |
|
__global const float* u2, |
|
__global float* I1w, |
|
__global float* I1wx, /*int I1wx_step,*/ |
|
__global float* I1wy, /*int I1wy_step,*/ |
|
__global float* grad, /*int grad_step,*/ |
|
__global float* rho, |
|
int I1w_step, |
|
int u2_step, |
|
int u1_offset_x, |
|
int u1_offset_y, |
|
int u2_offset_x, |
|
int u2_offset_y) |
|
{ |
|
int x = get_global_id(0); |
|
int y = get_global_id(1); |
|
|
|
if(x < I0_col&&y < I0_row) |
|
{ |
|
//float u1Val = u1(y, x); |
|
float u1Val = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
|
//float u2Val = u2(y, x); |
|
float u2Val = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
|
|
|
float wx = x + u1Val; |
|
float wy = y + u2Val; |
|
|
|
int xmin = ceil(wx - 2.0f); |
|
int xmax = floor(wx + 2.0f); |
|
|
|
int ymin = ceil(wy - 2.0f); |
|
int ymax = floor(wy + 2.0f); |
|
|
|
float sum = 0.0f; |
|
float sumx = 0.0f; |
|
float sumy = 0.0f; |
|
float wsum = 0.0f; |
|
sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; |
|
for (int cy = ymin; cy <= ymax; ++cy) |
|
{ |
|
for (int cx = xmin; cx <= xmax; ++cx) |
|
{ |
|
float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); |
|
//sum += w * tex2D(tex_I1 , cx, cy); |
|
int2 cood = (int2)(cx, cy); |
|
sum += w * read_imagef(tex_I1, sampleri, cood).x; |
|
//sumx += w * tex2D(tex_I1x, cx, cy); |
|
sumx += w * read_imagef(tex_I1x, sampleri, cood).x; |
|
//sumy += w * tex2D(tex_I1y, cx, cy); |
|
sumy += w * read_imagef(tex_I1y, sampleri, cood).x; |
|
wsum += w; |
|
} |
|
} |
|
float coeff = 1.0f / wsum; |
|
float I1wVal = sum * coeff; |
|
float I1wxVal = sumx * coeff; |
|
float I1wyVal = sumy * coeff; |
|
I1w[y * I1w_step + x] = I1wVal; |
|
I1wx[y * I1w_step + x] = I1wxVal; |
|
I1wy[y * I1w_step + x] = I1wyVal; |
|
float Ix2 = I1wxVal * I1wxVal; |
|
float Iy2 = I1wyVal * I1wyVal; |
|
|
|
// store the |Grad(I1)|^2 |
|
grad[y * I1w_step + x] = Ix2 + Iy2; |
|
|
|
// compute the constant part of the rho function |
|
float I0Val = I0[y * I0_step + x]; |
|
rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; |
|
} |
|
} |
|
|
|
inline float readImage(__global const float *image, int x, int y, int rows, int cols, int elemCntPerRow) |
|
{ |
|
int i0 = clamp(x, 0, cols - 1); |
|
int j0 = clamp(y, 0, rows - 1); |
|
|
|
return image[j0 * elemCntPerRow + i0]; |
|
} |
|
|
|
__kernel void warpBackwardKernelNoImage2d(__global const float* I0, int I0_step, int I0_col, int I0_row, |
|
__global const float* tex_I1, __global const float* tex_I1x, __global const float* tex_I1y, |
|
__global const float* u1, int u1_step, |
|
__global const float* u2, |
|
__global float* I1w, |
|
__global float* I1wx, /*int I1wx_step,*/ |
|
__global float* I1wy, /*int I1wy_step,*/ |
|
__global float* grad, /*int grad_step,*/ |
|
__global float* rho, |
|
int I1w_step, |
|
int u2_step, |
|
int I1_step, |
|
int I1x_step) |
|
{ |
|
int x = get_global_id(0); |
|
int y = get_global_id(1); |
|
|
|
if(x < I0_col&&y < I0_row) |
|
{ |
|
//float u1Val = u1(y, x); |
|
float u1Val = u1[y * u1_step + x]; |
|
//float u2Val = u2(y, x); |
|
float u2Val = u2[y * u2_step + x]; |
|
|
|
float wx = x + u1Val; |
|
float wy = y + u2Val; |
|
|
|
int xmin = ceil(wx - 2.0f); |
|
int xmax = floor(wx + 2.0f); |
|
|
|
int ymin = ceil(wy - 2.0f); |
|
int ymax = floor(wy + 2.0f); |
|
|
|
float sum = 0.0f; |
|
float sumx = 0.0f; |
|
float sumy = 0.0f; |
|
float wsum = 0.0f; |
|
|
|
for (int cy = ymin; cy <= ymax; ++cy) |
|
{ |
|
for (int cx = xmin; cx <= xmax; ++cx) |
|
{ |
|
float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); |
|
|
|
int2 cood = (int2)(cx, cy); |
|
sum += w * readImage(tex_I1, cood.x, cood.y, I0_col, I0_row, I1_step); |
|
sumx += w * readImage(tex_I1x, cood.x, cood.y, I0_col, I0_row, I1x_step); |
|
sumy += w * readImage(tex_I1y, cood.x, cood.y, I0_col, I0_row, I1x_step); |
|
wsum += w; |
|
} |
|
} |
|
|
|
float coeff = 1.0f / wsum; |
|
|
|
float I1wVal = sum * coeff; |
|
float I1wxVal = sumx * coeff; |
|
float I1wyVal = sumy * coeff; |
|
|
|
I1w[y * I1w_step + x] = I1wVal; |
|
I1wx[y * I1w_step + x] = I1wxVal; |
|
I1wy[y * I1w_step + x] = I1wyVal; |
|
|
|
float Ix2 = I1wxVal * I1wxVal; |
|
float Iy2 = I1wyVal * I1wyVal; |
|
|
|
// store the |Grad(I1)|^2 |
|
grad[y * I1w_step + x] = Ix2 + Iy2; |
|
|
|
// compute the constant part of the rho function |
|
float I0Val = I0[y * I0_step + x]; |
|
rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; |
|
} |
|
|
|
} |
|
|
|
|
|
__kernel void estimateDualVariablesKernel(__global const float* u1, int u1_col, int u1_row, int u1_step, |
|
__global const float* u2, |
|
__global float* p11, int p11_step, |
|
__global float* p12, |
|
__global float* p21, |
|
__global float* p22, |
|
float taut, |
|
int u2_step, |
|
int u1_offset_x, |
|
int u1_offset_y, |
|
int u2_offset_x, |
|
int u2_offset_y) |
|
{ |
|
int x = get_global_id(0); |
|
int y = get_global_id(1); |
|
|
|
if(x < u1_col && y < u1_row) |
|
{ |
|
int src_x1 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); |
|
float u1x = u1[(y + u1_offset_y) * u1_step + src_x1 + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
|
|
|
int src_y1 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); |
|
float u1y = u1[(src_y1 + u1_offset_y) * u1_step + x + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
|
|
|
int src_x2 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); |
|
float u2x = u2[(y + u2_offset_y) * u2_step + src_x2 + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
|
|
|
int src_y2 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); |
|
float u2y = u2[(src_y2 + u2_offset_y) * u2_step + x + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
|
|
|
float g1 = hypot(u1x, u1y); |
|
float g2 = hypot(u2x, u2y); |
|
|
|
float ng1 = 1.0f + taut * g1; |
|
float ng2 = 1.0f + taut * g2; |
|
|
|
p11[y * p11_step + x] = (p11[y * p11_step + x] + taut * u1x) / ng1; |
|
p12[y * p11_step + x] = (p12[y * p11_step + x] + taut * u1y) / ng1; |
|
p21[y * p11_step + x] = (p21[y * p11_step + x] + taut * u2x) / ng2; |
|
p22[y * p11_step + x] = (p22[y * p11_step + x] + taut * u2y) / ng2; |
|
} |
|
|
|
} |
|
|
|
inline float divergence(__global const float* v1, __global const float* v2, int y, int x, int v1_step, int v2_step) |
|
{ |
|
|
|
if (x > 0 && y > 0) |
|
{ |
|
float v1x = v1[y * v1_step + x] - v1[y * v1_step + x - 1]; |
|
float v2y = v2[y * v2_step + x] - v2[(y - 1) * v2_step + x]; |
|
return v1x + v2y; |
|
} |
|
else |
|
{ |
|
if (y > 0) |
|
return v1[y * v1_step + 0] + v2[y * v2_step + 0] - v2[(y - 1) * v2_step + 0]; |
|
else |
|
{ |
|
if (x > 0) |
|
return v1[0 * v1_step + x] - v1[0 * v1_step + x - 1] + v2[0 * v2_step + x]; |
|
else |
|
return v1[0 * v1_step + 0] + v2[0 * v2_step + 0]; |
|
} |
|
} |
|
|
|
} |
|
|
|
__kernel void estimateUKernel(__global const float* I1wx, int I1wx_col, int I1wx_row, int I1wx_step, |
|
__global const float* I1wy, /*int I1wy_step,*/ |
|
__global const float* grad, /*int grad_step,*/ |
|
__global const float* rho_c, /*int rho_c_step,*/ |
|
__global const float* p11, /*int p11_step,*/ |
|
__global const float* p12, /*int p12_step,*/ |
|
__global const float* p21, /*int p21_step,*/ |
|
__global const float* p22, /*int p22_step,*/ |
|
__global float* u1, int u1_step, |
|
__global float* u2, |
|
__global float* error, float l_t, float theta, int u2_step, |
|
int u1_offset_x, |
|
int u1_offset_y, |
|
int u2_offset_x, |
|
int u2_offset_y, |
|
char calc_error) |
|
{ |
|
int x = get_global_id(0); |
|
int y = get_global_id(1); |
|
|
|
if(x < I1wx_col && y < I1wx_row) |
|
{ |
|
float I1wxVal = I1wx[y * I1wx_step + x]; |
|
float I1wyVal = I1wy[y * I1wx_step + x]; |
|
float gradVal = grad[y * I1wx_step + x]; |
|
float u1OldVal = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; |
|
float u2OldVal = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; |
|
|
|
float rho = rho_c[y * I1wx_step + x] + (I1wxVal * u1OldVal + I1wyVal * u2OldVal); |
|
|
|
// estimate the values of the variable (v1, v2) (thresholding operator TH) |
|
|
|
float d1 = 0.0f; |
|
float d2 = 0.0f; |
|
|
|
if (rho < -l_t * gradVal) |
|
{ |
|
d1 = l_t * I1wxVal; |
|
d2 = l_t * I1wyVal; |
|
} |
|
else if (rho > l_t * gradVal) |
|
{ |
|
d1 = -l_t * I1wxVal; |
|
d2 = -l_t * I1wyVal; |
|
} |
|
else if (gradVal > 1.192092896e-07f) |
|
{ |
|
float fi = -rho / gradVal; |
|
d1 = fi * I1wxVal; |
|
d2 = fi * I1wyVal; |
|
} |
|
|
|
float v1 = u1OldVal + d1; |
|
float v2 = u2OldVal + d2; |
|
|
|
// compute the divergence of the dual variable (p1, p2) |
|
|
|
float div_p1 = divergence(p11, p12, y, x, I1wx_step, I1wx_step); |
|
float div_p2 = divergence(p21, p22, y, x, I1wx_step, I1wx_step); |
|
|
|
// estimate the values of the optical flow (u1, u2) |
|
|
|
float u1NewVal = v1 + theta * div_p1; |
|
float u2NewVal = v2 + theta * div_p2; |
|
|
|
u1[(y + u1_offset_y) * u1_step + x + u1_offset_x] = u1NewVal; |
|
u2[(y + u2_offset_y) * u2_step + x + u2_offset_x] = u2NewVal; |
|
|
|
if(calc_error) |
|
{ |
|
float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal); |
|
float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal); |
|
error[y * I1wx_step + x] = n1 + n2; |
|
} |
|
} |
|
}
|
|
|