mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.2 KiB
160 lines
5.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Test_Caffe, read_gtsrb) |
|
{ |
|
Net net; |
|
{ |
|
Ptr<Importer> importer = createCaffeImporter(_tf("gtsrb.prototxt"), ""); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
} |
|
|
|
TEST(Test_Caffe, read_googlenet) |
|
{ |
|
Net net; |
|
{ |
|
Ptr<Importer> importer = createCaffeImporter(_tf("bvlc_googlenet.prototxt"), ""); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
} |
|
|
|
TEST(Reproducibility_AlexNet, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); |
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); |
|
Ptr<Importer> importer = createCaffeImporter(proto, model); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
Size inputSize(227, 227); |
|
|
|
if (sample.size() != inputSize) |
|
resize(sample, sample, inputSize); |
|
|
|
net.setInput(blobFromImage(sample), "data"); |
|
Mat out = net.forward("prob"); |
|
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); |
|
normAssert(ref, out); |
|
} |
|
|
|
#if !defined(_WIN32) || defined(_WIN64) |
|
TEST(Reproducibility_FCN, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt", false); |
|
const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false); |
|
Ptr<Importer> importer = createCaffeImporter(proto, model); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Mat sample = imread(_tf("street.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
Size inputSize(500, 500); |
|
if (sample.size() != inputSize) |
|
resize(sample, sample, inputSize); |
|
|
|
std::vector<int> layerIds; |
|
std::vector<size_t> weights, blobs; |
|
net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs); |
|
|
|
net.setInput(blobFromImage(sample), "data"); |
|
Mat out = net.forward("score"); |
|
Mat ref = blobFromNPY(_tf("caffe_fcn8s_prob.npy")); |
|
normAssert(ref, out); |
|
} |
|
#endif |
|
|
|
TEST(Reproducibility_SSD, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string proto = findDataFile("dnn/ssd_vgg16.prototxt", false); |
|
const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false); |
|
Ptr<Importer> importer = createCaffeImporter(proto, model); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Mat sample = imread(_tf("street.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
if (sample.channels() == 4) |
|
cvtColor(sample, sample, COLOR_BGRA2BGR); |
|
|
|
sample.convertTo(sample, CV_32F); |
|
resize(sample, sample, Size(300, 300)); |
|
|
|
Mat in_blob = blobFromImage(sample); |
|
net.setInput(in_blob, "data"); |
|
Mat out = net.forward("detection_out"); |
|
|
|
Mat ref = blobFromNPY(_tf("ssd_out.npy")); |
|
normAssert(ref, out); |
|
} |
|
}
|
|
|