mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
4.8 KiB
187 lines
4.8 KiB
#include "perf_cpu_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// SURF |
|
|
|
GPU_PERF_TEST_1(SURF, cv::gpu::DeviceInfo) |
|
{ |
|
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::SURF surf; |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::Mat descriptors; |
|
|
|
surf(img, cv::noArray(), keypoints, descriptors); |
|
|
|
declare.time(50.0); |
|
|
|
TEST_CYCLE() |
|
{ |
|
keypoints.clear(); |
|
surf(img, cv::noArray(), keypoints, descriptors); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, SURF, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// FAST |
|
|
|
GPU_PERF_TEST_1(FAST, cv::gpu::DeviceInfo) |
|
{ |
|
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
|
|
cv::FAST(img, keypoints, 20); |
|
|
|
TEST_CYCLE() |
|
{ |
|
keypoints.clear(); |
|
cv::FAST(img, keypoints, 20); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, FAST, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ORB |
|
|
|
GPU_PERF_TEST_1(ORB, cv::gpu::DeviceInfo) |
|
{ |
|
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::ORB orb(4000); |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::Mat descriptors; |
|
|
|
orb(img, cv::noArray(), keypoints, descriptors); |
|
|
|
TEST_CYCLE() |
|
{ |
|
keypoints.clear(); |
|
orb(img, cv::noArray(), keypoints, descriptors); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, ORB, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BruteForceMatcher_match |
|
|
|
IMPLEMENT_PARAM_CLASS(DescriptorSize, int) |
|
|
|
GPU_PERF_TEST(BruteForceMatcher_match, cv::gpu::DeviceInfo, DescriptorSize, NormType) |
|
{ |
|
int desc_size = GET_PARAM(1); |
|
int normType = GET_PARAM(2); |
|
|
|
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
fill(query, 0.0, 10.0); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
fill(train, 0.0, 10.0); |
|
|
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector<cv::DMatch> matches; |
|
|
|
matcher.match(query, train, matches); |
|
|
|
declare.time(20.0); |
|
|
|
TEST_CYCLE() |
|
{ |
|
matcher.match(query, train, matches); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_match, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
|
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BruteForceMatcher_knnMatch |
|
|
|
IMPLEMENT_PARAM_CLASS(K, int) |
|
|
|
GPU_PERF_TEST(BruteForceMatcher_knnMatch, cv::gpu::DeviceInfo, DescriptorSize, K, NormType) |
|
{ |
|
int desc_size = GET_PARAM(1); |
|
int k = GET_PARAM(2); |
|
int normType = GET_PARAM(3); |
|
|
|
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
fill(query, 0.0, 10.0); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
fill(train, 0.0, 10.0); |
|
|
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
matcher.knnMatch(query, train, matches, k); |
|
|
|
declare.time(30.0); |
|
|
|
TEST_CYCLE() |
|
{ |
|
matcher.knnMatch(query, train, matches, k); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_knnMatch, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
|
testing::Values(K(2), K(3)), |
|
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BruteForceMatcher_radiusMatch |
|
|
|
GPU_PERF_TEST(BruteForceMatcher_radiusMatch, cv::gpu::DeviceInfo, DescriptorSize, NormType) |
|
{ |
|
int desc_size = GET_PARAM(1); |
|
int normType = GET_PARAM(2); |
|
|
|
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
fill(query, 0.0, 1.0); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
fill(train, 0.0, 1.0); |
|
|
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
matcher.radiusMatch(query, train, matches, 2.0); |
|
|
|
declare.time(30.0); |
|
|
|
TEST_CYCLE() |
|
{ |
|
matcher.radiusMatch(query, train, matches, 2.0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_radiusMatch, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
|
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
|
|
|
#endif
|
|
|