Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

729 lines
22 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENEXR
#include <ImfHeader.h>
#include <ImfInputFile.h>
#include <ImfOutputFile.h>
#include <ImfChannelList.h>
#include <ImfStandardAttributes.h>
#include <half.h>
#include "grfmt_exr.hpp"
#if defined _MSC_VER && _MSC_VER >= 1200
#pragma comment(lib, "Half.lib")
#pragma comment(lib, "Iex.lib")
#pragma comment(lib, "IlmImf.lib")
#pragma comment(lib, "IlmThread.lib")
#pragma comment(lib, "Imath.lib")
#undef UINT
#define UINT ((Imf::PixelType)0)
#undef HALF
#define HALF ((Imf::PixelType)1)
#undef FLOAT
#define FLOAT ((Imf::PixelType)2)
#endif
namespace cv
{
/////////////////////// ExrDecoder ///////////////////
ExrDecoder::ExrDecoder()
{
m_signature = "\x76\x2f\x31\x01";
m_file = 0;
m_red = m_green = m_blue = 0;
}
ExrDecoder::~ExrDecoder()
{
close();
}
void ExrDecoder::close()
{
if( m_file )
{
delete m_file;
m_file = 0;
}
}
bool ExrDecoder::readHeader()
{
bool result = false;
m_file = new InputFile( m_filename.c_str() );
if( !m_file ) // probably paranoid
return false;
m_datawindow = m_file->header().dataWindow();
m_width = m_datawindow.max.x - m_datawindow.min.x + 1;
m_height = m_datawindow.max.y - m_datawindow.min.y + 1;
// the type HALF is converted to 32 bit float
// and the other types supported by OpenEXR are 32 bit anyway
m_bit_depth = 32;
if( hasChromaticities( m_file->header() ))
m_chroma = chromaticities( m_file->header() );
const ChannelList &channels = m_file->header().channels();
m_red = channels.findChannel( "R" );
m_green = channels.findChannel( "G" );
m_blue = channels.findChannel( "B" );
if( m_red || m_green || m_blue )
{
m_iscolor = true;
m_ischroma = false;
result = true;
}
else
{
m_green = channels.findChannel( "Y" );
if( m_green )
{
m_ischroma = true;
m_red = channels.findChannel( "RY" );
m_blue = channels.findChannel( "BY" );
m_iscolor = (m_blue || m_red);
result = true;
}
else
result = false;
}
if( result )
{
int uintcnt = 0;
int chcnt = 0;
if( m_red )
{
chcnt++;
uintcnt += ( m_red->type == UINT );
}
if( m_green )
{
chcnt++;
uintcnt += ( m_green->type == UINT );
}
if( m_blue )
{
chcnt++;
uintcnt += ( m_blue->type == UINT );
}
m_type = (chcnt == uintcnt) ? UINT : FLOAT;
m_isfloat = (m_type == FLOAT);
}
if( !result )
close();
return result;
}
bool ExrDecoder::readData( Mat& img )
{
bool color = img.channels() > 1;
uchar* data = img.data;
int step = img.step;
bool justcopy = m_native_depth;
bool chromatorgb = false;
bool rgbtogray = false;
bool result = true;
FrameBuffer frame;
int xsample[3] = {1, 1, 1};
char *buffer;
int xstep;
int ystep;
xstep = m_native_depth ? 4 : 1;
if( !m_native_depth || (!color && m_iscolor ))
{
buffer = (char *)new float[ m_width * 3 ];
ystep = 0;
}
else
{
buffer = (char *)data;
ystep = step;
}
if( m_ischroma )
{
if( color )
{
if( m_iscolor )
{
if( m_blue )
{
frame.insert( "BY", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep,
12, ystep, m_blue->xSampling, m_blue->ySampling, 0.0 ));
xsample[0] = m_blue->ySampling;
}
if( m_green )
{
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 4,
12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[1] = m_green->ySampling;
}
if( m_red )
{
frame.insert( "RY", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 8,
12, ystep, m_red->xSampling, m_red->ySampling, 0.0 ));
xsample[2] = m_red->ySampling;
}
chromatorgb = true;
}
else
{
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep,
12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 4,
12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 8,
12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[0] = m_green->ySampling;
xsample[1] = m_green->ySampling;
xsample[2] = m_green->ySampling;
}
}
else
{
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * 4 - m_datawindow.min.y * ystep,
4, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[0] = m_green->ySampling;
}
}
else
{
if( m_blue )
{
frame.insert( "B", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep,
12, ystep, m_blue->xSampling, m_blue->ySampling, 0.0 ));
xsample[0] = m_blue->ySampling;
}
if( m_green )
{
frame.insert( "G", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 4,
12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[1] = m_green->ySampling;
}
if( m_red )
{
frame.insert( "R", Slice( m_type,
buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 8,
12, ystep, m_red->xSampling, m_red->ySampling, 0.0 ));
xsample[2] = m_red->ySampling;
}
if(color == 0)
{
rgbtogray = true;
justcopy = false;
}
}
m_file->setFrameBuffer( frame );
if( justcopy )
{
m_file->readPixels( m_datawindow.min.y, m_datawindow.max.y );
if( color )
{
if( m_blue && (m_blue->xSampling != 1 || m_blue->ySampling != 1) )
UpSample( data, 3, step / xstep, xsample[0], m_blue->ySampling );
if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSample( data + xstep, 3, step / xstep, xsample[1], m_green->ySampling );
if( m_red && (m_red->xSampling != 1 || m_red->ySampling != 1) )
UpSample( data + 2 * xstep, 3, step / xstep, xsample[2], m_red->ySampling );
}
else if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSample( data, 1, step / xstep, xsample[0], m_green->ySampling );
}
else
{
uchar *out = data;
int x, y;
for( y = m_datawindow.min.y; y <= m_datawindow.max.y; y++ )
{
m_file->readPixels( y, y );
if( rgbtogray )
{
if( xsample[0] != 1 )
UpSampleX( (float *)buffer, 3, xsample[0] );
if( xsample[1] != 1 )
UpSampleX( (float *)buffer + 4, 3, xsample[1] );
if( xsample[2] != 1 )
UpSampleX( (float *)buffer + 8, 3, xsample[2] );
RGBToGray( (float *)buffer, (float *)out );
}
else
{
if( xsample[0] != 1 )
UpSampleX( (float *)buffer, 3, xsample[0] );
if( xsample[1] != 1 )
UpSampleX( (float *)(buffer + 4), 3, xsample[1] );
if( xsample[2] != 1 )
UpSampleX( (float *)(buffer + 8), 3, xsample[2] );
if( chromatorgb )
ChromaToBGR( (float *)buffer, 1, step );
if( m_type == FLOAT )
{
float *fi = (float *)buffer;
for( x = 0; x < m_width * 3; x++)
{
int t = cvRound(fi[x]*5);
out[x] = CV_CAST_8U(t);
}
}
else
{
unsigned *ui = (unsigned *)buffer;
for( x = 0; x < m_width * 3; x++)
{
unsigned t = ui[x];
out[x] = CV_CAST_8U(t);
}
}
}
out += step;
}
if( color )
{
if( m_blue && (m_blue->xSampling != 1 || m_blue->ySampling != 1) )
UpSampleY( data, 3, step / xstep, m_blue->ySampling );
if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSampleY( data + xstep, 3, step / xstep, m_green->ySampling );
if( m_red && (m_red->xSampling != 1 || m_red->ySampling != 1) )
UpSampleY( data + 2 * xstep, 3, step / xstep, m_red->ySampling );
}
else if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSampleY( data, 1, step / xstep, m_green->ySampling );
}
if( chromatorgb )
ChromaToBGR( (float *)data, m_height, step / xstep );
close();
return result;
}
/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
*/
void ExrDecoder::UpSample( uchar *data, int xstep, int ystep, int xsample, int ysample )
{
for( int y = (m_height - 1) / ysample, yre = m_height - ysample; y >= 0; y--, yre -= ysample )
{
for( int x = (m_width - 1) / xsample, xre = m_width - xsample; x >= 0; x--, xre -= xsample )
{
for( int i = 0; i < ysample; i++ )
{
for( int n = 0; n < xsample; n++ )
{
if( !m_native_depth )
data[(yre + i) * ystep + (xre + n) * xstep] = data[y * ystep + x * xstep];
else if( m_type == FLOAT )
((float *)data)[(yre + i) * ystep + (xre + n) * xstep] = ((float *)data)[y * ystep + x * xstep];
else
((unsigned *)data)[(yre + i) * ystep + (xre + n) * xstep] = ((unsigned *)data)[y * ystep + x * xstep];
}
}
}
}
}
/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
*/
void ExrDecoder::UpSampleX( float *data, int xstep, int xsample )
{
for( int x = (m_width - 1) / xsample, xre = m_width - xsample; x >= 0; x--, xre -= xsample )
{
for( int n = 0; n < xsample; n++ )
{
if( m_type == FLOAT )
((float *)data)[(xre + n) * xstep] = ((float *)data)[x * xstep];
else
((unsigned *)data)[(xre + n) * xstep] = ((unsigned *)data)[x * xstep];
}
}
}
/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
*/
void ExrDecoder::UpSampleY( uchar *data, int xstep, int ystep, int ysample )
{
for( int y = m_height - ysample, yre = m_height - ysample; y >= 0; y -= ysample, yre -= ysample )
{
for( int x = 0; x < m_width; x++ )
{
for( int i = 1; i < ysample; i++ )
{
if( !m_native_depth )
data[(yre + i) * ystep + x * xstep] = data[y * ystep + x * xstep];
else if( m_type == FLOAT )
((float *)data)[(yre + i) * ystep + x * xstep] = ((float *)data)[y * ystep + x * xstep];
else
((unsigned *)data)[(yre + i) * ystep + x * xstep] = ((unsigned *)data)[y * ystep + x * xstep];
}
}
}
}
/**
// algorithm from ImfRgbaYca.cpp
*/
void ExrDecoder::ChromaToBGR( float *data, int numlines, int step )
{
for( int y = 0; y < numlines; y++ )
{
for( int x = 0; x < m_width; x++ )
{
double b, Y, r;
if( !m_native_depth )
{
b = ((uchar *)data)[y * step + x * 3];
Y = ((uchar *)data)[y * step + x * 3 + 1];
r = ((uchar *)data)[y * step + x * 3 + 2];
}
else if( m_type == FLOAT )
{
b = data[y * step + x * 3];
Y = data[y * step + x * 3 + 1];
r = data[y * step + x * 3 + 2];
}
else
{
b = ((unsigned *)data)[y * step + x * 3];
Y = ((unsigned *)data)[y * step + x * 3 + 1];
r = ((unsigned *)data)[y * step + x * 3 + 2];
}
r = (r + 1) * Y;
b = (b + 1) * Y;
Y = (Y - b * m_chroma.blue[1] - r * m_chroma.red[1]) / m_chroma.green[1];
if( !m_native_depth )
{
int t = cvRound(b);
((uchar *)data)[y * step + x * 3] = CV_CAST_8U(t);
t = cvRound(Y);
((uchar *)data)[y * step + x * 3 + 1] = CV_CAST_8U(t);
t = cvRound(r);
((uchar *)data)[y * step + x * 3 + 2] = CV_CAST_8U(t);
}
else if( m_type == FLOAT )
{
data[y * step + x * 3] = (float)b;
data[y * step + x * 3 + 1] = (float)Y;
data[y * step + x * 3 + 2] = (float)r;
}
else
{
int t = cvRound(b);
((unsigned *)data)[y * step + x * 3] = (unsigned)MAX(t,0);
t = cvRound(Y);
((unsigned *)data)[y * step + x * 3 + 1] = (unsigned)MAX(t,0);
t = cvRound(r);
((unsigned *)data)[y * step + x * 3 + 2] = (unsigned)MAX(t,0);
}
}
}
}
/**
// convert one row to gray
*/
void ExrDecoder::RGBToGray( float *in, float *out )
{
if( m_type == FLOAT )
{
if( m_native_depth )
{
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
out[i] = in[n] * m_chroma.blue[0] + in[n + 1] * m_chroma.green[0] + in[n + 2] * m_chroma.red[0];
}
else
{
uchar *o = (uchar *)out;
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
o[i] = (uchar) (in[n] * m_chroma.blue[0] + in[n + 1] * m_chroma.green[0] + in[n + 2] * m_chroma.red[0]);
}
}
else // UINT
{
if( m_native_depth )
{
unsigned *ui = (unsigned *)in;
for( int i = 0; i < m_width * 3; i++ )
ui[i] -= 0x80000000;
int *si = (int *)in;
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
((int *)out)[i] = int(si[n] * m_chroma.blue[0] + si[n + 1] * m_chroma.green[0] + si[n + 2] * m_chroma.red[0]);
}
else // how to best convert float to uchar?
{
unsigned *ui = (unsigned *)in;
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
((uchar *)out)[i] = uchar((ui[n] * m_chroma.blue[0] + ui[n + 1] * m_chroma.green[0] + ui[n + 2] * m_chroma.red[0]) * (256.0 / 4294967296.0));
}
}
}
ImageDecoder ExrDecoder::newDecoder() const
{
return new ExrDecoder;
}
/////////////////////// ExrEncoder ///////////////////
ExrEncoder::ExrEncoder()
{
m_description = "OpenEXR Image files (*.exr)";
}
ExrEncoder::~ExrEncoder()
{
}
bool ExrEncoder::isFormatSupported( int depth ) const
{
return CV_MAT_DEPTH(depth) >= CV_8U && CV_MAT_DEPTH(depth) < CV_64F;
}
// TODO scale appropriately
bool ExrEncoder::write( const Mat& img, const vector<int>& )
{
int width = img.cols, height = img.rows;
int depth = img.depth(), channels = img.channels();
bool result = false;
bool issigned = depth == CV_8S || depth == CV_16S || depth == CV_32S;
bool isfloat = depth == CV_32F || depth == CV_64F;
depth = CV_ELEM_SIZE1(depth)*8;
uchar* data = img.data;
int step = img.step;
Header header( width, height );
PixelType type;
if(depth == 8)
type = HALF;
else if(isfloat)
type = FLOAT;
else
type = UINT;
if( channels == 3 )
{
header.channels().insert( "R", Channel( type ));
header.channels().insert( "G", Channel( type ));
header.channels().insert( "B", Channel( type ));
//printf("bunt\n");
}
else
{
header.channels().insert( "Y", Channel( type ));
//printf("gray\n");
}
OutputFile file( m_filename.c_str(), header );
FrameBuffer frame;
char *buffer;
int bufferstep;
int size;
if( type == FLOAT && depth == 32 )
{
buffer = (char *)const_cast<uchar *>(data);
bufferstep = step;
size = 4;
}
else if( depth > 16 || type == UINT )
{
buffer = (char *)new unsigned[width * channels];
bufferstep = 0;
size = 4;
}
else
{
buffer = (char *)new half[width * channels];
bufferstep = 0;
size = 2;
}
//printf("depth %d %s\n", depth, types[type]);
if( channels == 3 )
{
frame.insert( "B", Slice( type, buffer, size * 3, bufferstep ));
frame.insert( "G", Slice( type, buffer + size, size * 3, bufferstep ));
frame.insert( "R", Slice( type, buffer + size * 2, size * 3, bufferstep ));
}
else
frame.insert( "Y", Slice( type, buffer, size, bufferstep ));
file.setFrameBuffer( frame );
int offset = issigned ? 1 << (depth - 1) : 0;
result = true;
if( type == FLOAT && depth == 32 )
{
try
{
file.writePixels( height );
}
catch(...)
{
result = false;
}
}
else
{
// int scale = 1 << (32 - depth);
// printf("scale %d\n", scale);
for(int line = 0; line < height; line++)
{
if(type == UINT)
{
unsigned *buf = (unsigned*)buffer; // FIXME 64-bit problems
if( depth <= 8 )
{
for(int i = 0; i < width * channels; i++)
buf[i] = data[i] + offset;
}
else if( depth <= 16 )
{
unsigned short *sd = (unsigned short *)data;
for(int i = 0; i < width * channels; i++)
buf[i] = sd[i] + offset;
}
else
{
int *sd = (int *)data; // FIXME 64-bit problems
for(int i = 0; i < width * channels; i++)
buf[i] = (unsigned) sd[i] + offset;
}
}
else
{
half *buf = (half *)buffer;
if( depth <= 8 )
{
for(int i = 0; i < width * channels; i++)
buf[i] = data[i];
}
else if( depth <= 16 )
{
unsigned short *sd = (unsigned short *)data;
for(int i = 0; i < width * channels; i++)
buf[i] = sd[i];
}
}
try
{
file.writePixels( 1 );
}
catch(...)
{
result = false;
break;
}
data += step;
}
delete buffer;
}
return result;
}
ImageEncoder ExrEncoder::newEncoder() const
{
return new ExrEncoder;
}
}
#endif
/* End of file. */