Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

137 lines
5.8 KiB

import numpy as np, cv2 as cv, matplotlib.pyplot as plt, time, sys, os
from mpl_toolkits.mplot3d import axes3d, Axes3D
def getEpipolarError(F, pts1_, pts2_, inliers):
pts1 = np.concatenate((pts1_.T, np.ones((1, pts1_.shape[0]))))[:,inliers]
pts2 = np.concatenate((pts2_.T, np.ones((1, pts2_.shape[0]))))[:,inliers]
lines2 = np.dot(F , pts1)
lines1 = np.dot(F.T, pts2)
return np.median((np.abs(np.sum(pts1 * lines1, axis=0)) / np.sqrt(lines1[0,:]**2 + lines1[1,:]**2) +
np.abs(np.sum(pts2 * lines2, axis=0)) / np.sqrt(lines2[0,:]**2 + lines2[1,:]**2))/2)
if __name__ == '__main__':
if len(sys.argv) < 3:
print("Path to data file and directory to image files are missing!\nData file must have"
" format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n"
"0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as "
"the data file then add argument with directory to image files.\nFor example: "
"python essential_mat_reconstr.py essential_mat_data.txt ./")
exit(1)
else:
data_file = sys.argv[1]
image_dir = sys.argv[2]
if not os.path.isfile(data_file):
print('Incorrect path to data file!')
exit(1)
with open(data_file, 'r') as f:
image1 = cv.imread(image_dir+f.readline()[:-1]) # remove '\n'
image2 = cv.imread(image_dir+f.readline()[:-1])
K = np.array([[float(x) for x in f.readline().split(' ')],
[float(x) for x in f.readline().split(' ')],
[float(x) for x in f.readline().split(' ')]])
if image1 is None or image2 is None:
print('Incorrect directory to images!')
exit(1)
if K.shape != (3,3):
print('Intrinsic matrix has incorrect format!')
exit(1)
print('find keypoints and compute descriptors')
detector = cv.SIFT_create(nfeatures=20000)
keypoints1, descriptors1 = detector.detectAndCompute(cv.cvtColor(image1, cv.COLOR_BGR2GRAY), None)
keypoints2, descriptors2 = detector.detectAndCompute(cv.cvtColor(image2, cv.COLOR_BGR2GRAY), None)
matcher = cv.FlannBasedMatcher(dict(algorithm=0, trees=5), dict(checks=32))
print('match with FLANN, size of descriptors', descriptors1.shape, descriptors2.shape)
matches_vector = matcher.knnMatch(descriptors1, descriptors2, k=2)
print('find good keypoints')
pts1 = []; pts2 = []
for m in matches_vector:
# compare best and second match using Lowe ratio test
if m[0].distance / m[1].distance < 0.75:
pts1.append(keypoints1[m[0].queryIdx].pt)
pts2.append(keypoints2[m[0].trainIdx].pt)
pts1 = np.array(pts1); pts2 = np.array(pts2)
print('points size', pts1.shape[0])
print('Essential matrix RANSAC')
start = time.time()
E, inliers = cv.findEssentialMat(pts1, pts2, K, cv.RANSAC, 0.999, 1.0)
print('RANSAC time', time.time() - start, 'seconds')
print('Median error to epipolar lines', getEpipolarError
(np.dot(np.linalg.inv(K).T, np.dot(E, np.linalg.inv(K))), pts1, pts2, inliers.squeeze()),
'number of inliers', inliers.sum())
print('Decompose essential matrix')
R1, R2, t = cv.decomposeEssentialMat(E)
# Assume relative pose. Fix the first camera
P1 = np.concatenate((K, np.zeros((3,1))), axis=1) # K [I | 0]
P2s = [np.dot(K, np.concatenate((R1, t), axis=1)), # K[R1 | t]
np.dot(K, np.concatenate((R1, -t), axis=1)), # K[R1 | -t]
np.dot(K, np.concatenate((R2, t), axis=1)), # K[R2 | t]
np.dot(K, np.concatenate((R2, -t), axis=1))] # K[R2 | -t]
obj_pts_per_cam = []
# enumerate over all P2 projection matrices
for cam_idx, P2 in enumerate(P2s):
obj_pts = []
for i, (pt1, pt2) in enumerate(zip(pts1, pts2)):
if not inliers[i]:
continue
# find object point by triangulation of image points by projection matrices
obj_pt = cv.triangulatePoints(P1, P2, pt1, pt2)
obj_pt /= obj_pt[3]
# check if reprojected point has positive depth
if obj_pt[2] > 0:
obj_pts.append([obj_pt[0], obj_pt[1], obj_pt[2]])
obj_pts_per_cam.append(obj_pts)
best_cam_idx = np.array([len(obj_pts_per_cam[0]),len(obj_pts_per_cam[1]),
len(obj_pts_per_cam[2]),len(obj_pts_per_cam[3])]).argmax()
max_pts = len(obj_pts_per_cam[best_cam_idx])
print('Number of object points', max_pts)
# filter object points to have reasonable depth
MAX_DEPTH = 6.
obj_pts = []
for pt in obj_pts_per_cam[best_cam_idx]:
if pt[2] < MAX_DEPTH:
obj_pts.append(pt)
obj_pts = np.array(obj_pts).reshape(len(obj_pts), 3)
# visualize image points
for i, (pt1, pt2) in enumerate(zip(pts1, pts2)):
if inliers[i]:
cv.circle(image1, (int(pt1[0]), int(pt1[1])), 7, (255,0,0), -1)
cv.circle(image2, (int(pt2[0]), int(pt2[1])), 7, (255,0,0), -1)
# concatenate two images
image1 = np.concatenate((image1, image2), axis=1)
# resize concatenated image
new_img_size = 1200. * 800.
image1 = cv.resize(image1, (int(np.sqrt(image1.shape[1] * new_img_size / image1.shape[0])),
int(np.sqrt (image1.shape[0] * new_img_size / image1.shape[1]))))
# plot object points
fig = plt.figure(figsize=(13.0, 11.0))
ax = fig.add_subplot(111, projection='3d')
ax.set_aspect('equal')
ax.scatter(obj_pts[:,0], obj_pts[:,1], obj_pts[:,2], c='r', marker='o', s=3)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('depth')
ax.view_init(azim=-80, elev=110)
# save figures
cv.imshow("matches", image1)
cv.imwrite('matches_E.png', image1)
plt.savefig('reconstruction_3D.png')
cv.waitKey(0)
plt.show()