mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
8.5 KiB
216 lines
8.5 KiB
#include <algorithm> |
|
#include <iostream> |
|
#include <cctype> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/imgproc.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/render.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
const std::string about = |
|
"This is an OpenCV-based version of Privacy Masking Camera example"; |
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ platm | vehicle-license-plate-detection-barrier-0106.xml | Path to OpenVINO IE vehicle/plate detection model (.xml) }" |
|
"{ platd | CPU | Target device for vehicle/plate detection model (e.g. CPU, GPU, VPU, ...) }" |
|
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }" |
|
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }" |
|
"{ trad | false | Run processing in a traditional (non-pipelined) way }" |
|
"{ noshow | false | Don't display UI (improves performance) }"; |
|
|
|
namespace { |
|
|
|
std::string weights_path(const std::string &model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
auto ext = model_path.substr(sz - EXT_LEN); |
|
|
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return static_cast<unsigned char>(std::tolower(c)); }); |
|
CV_Assert(ext == ".xml"); |
|
|
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
} // namespace |
|
|
|
namespace custom { |
|
|
|
G_API_NET(VehLicDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector"); |
|
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector"); |
|
|
|
using GDetections = cv::GArray<cv::Rect>; |
|
|
|
G_API_OP(ParseSSD, <GDetections(cv::GMat, cv::GMat, int)>, "custom.privacy_masking.postproc") { |
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &, int) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>; |
|
|
|
G_API_OP(ToMosaic, <GPrims(GDetections, GDetections)>, "custom.privacy_masking.to_mosaic") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GArrayDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { |
|
static void run(const cv::Mat &in_ssd_result, |
|
const cv::Mat &in_frame, |
|
const int filter_label, |
|
std::vector<cv::Rect> &out_objects) { |
|
const auto &in_ssd_dims = in_ssd_result.size; |
|
CV_Assert(in_ssd_dims.dims() == 4u); |
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2]; |
|
const int OBJECT_SIZE = in_ssd_dims[3]; |
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size |
|
|
|
const cv::Size upscale = in_frame.size(); |
|
const cv::Rect surface({0,0}, upscale); |
|
|
|
out_objects.clear(); |
|
|
|
const float *data = in_ssd_result.ptr<float>(); |
|
for (int i = 0; i < MAX_PROPOSALS; i++) { |
|
const float image_id = data[i * OBJECT_SIZE + 0]; |
|
const float label = data[i * OBJECT_SIZE + 1]; |
|
const float confidence = data[i * OBJECT_SIZE + 2]; |
|
const float rc_left = data[i * OBJECT_SIZE + 3]; |
|
const float rc_top = data[i * OBJECT_SIZE + 4]; |
|
const float rc_right = data[i * OBJECT_SIZE + 5]; |
|
const float rc_bottom = data[i * OBJECT_SIZE + 6]; |
|
|
|
if (image_id < 0.f) { |
|
break; // marks end-of-detections |
|
} |
|
if (confidence < 0.5f) { |
|
continue; // skip objects with low confidence |
|
} |
|
if (filter_label != -1 && static_cast<int>(label) != filter_label) { |
|
continue; // filter out object classes if filter is specified |
|
} |
|
|
|
cv::Rect rc; // map relative coordinates to the original image scale |
|
rc.x = static_cast<int>(rc_left * upscale.width); |
|
rc.y = static_cast<int>(rc_top * upscale.height); |
|
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x; |
|
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y; |
|
out_objects.emplace_back(rc & surface); |
|
} |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVToMosaic, ToMosaic) { |
|
static void run(const std::vector<cv::Rect> &in_plate_rcs, |
|
const std::vector<cv::Rect> &in_face_rcs, |
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) { |
|
out_prims.clear(); |
|
const auto cvt = [](cv::Rect rc) { |
|
// Align the mosaic region to mosaic block size |
|
const int BLOCK_SIZE = 24; |
|
const int dw = BLOCK_SIZE - (rc.width % BLOCK_SIZE); |
|
const int dh = BLOCK_SIZE - (rc.height % BLOCK_SIZE); |
|
rc.width += dw; |
|
rc.height += dh; |
|
rc.x -= dw / 2; |
|
rc.y -= dh / 2; |
|
return cv::gapi::wip::draw::Mosaic{rc, BLOCK_SIZE, 0}; |
|
}; |
|
for (auto &&rc : in_plate_rcs) { out_prims.emplace_back(cvt(rc)); } |
|
for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc)); } |
|
} |
|
}; |
|
|
|
} // namespace custom |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
cmd.about(about); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
const std::string input = cmd.get<std::string>("input"); |
|
const bool no_show = cmd.get<bool>("noshow"); |
|
const bool run_trad = cmd.get<bool>("trad"); |
|
|
|
cv::GMat in; |
|
cv::GMat blob_plates = cv::gapi::infer<custom::VehLicDetector>(in); |
|
cv::GMat blob_faces = cv::gapi::infer<custom::FaceDetector>(in); |
|
// VehLicDetector from Open Model Zoo marks vehicles with label "1" and |
|
// license plates with label "2", filter out license plates only. |
|
cv::GArray<cv::Rect> rc_plates = custom::ParseSSD::on(blob_plates, in, 2); |
|
// Face detector produces faces only so there's no need to filter by label, |
|
// pass "-1". |
|
cv::GArray<cv::Rect> rc_faces = custom::ParseSSD::on(blob_faces, in, -1); |
|
cv::GMat out = cv::gapi::wip::draw::render3ch(in, custom::ToMosaic::on(rc_plates, rc_faces)); |
|
cv::GComputation graph(in, out); |
|
|
|
const auto plate_model_path = cmd.get<std::string>("platm"); |
|
auto plate_net = cv::gapi::ie::Params<custom::VehLicDetector> { |
|
plate_model_path, // path to topology IR |
|
weights_path(plate_model_path), // path to weights |
|
cmd.get<std::string>("platd"), // device specifier |
|
}; |
|
const auto face_model_path = cmd.get<std::string>("facem"); |
|
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> { |
|
face_model_path, // path to topology IR |
|
weights_path(face_model_path), // path to weights |
|
cmd.get<std::string>("faced"), // device specifier |
|
}; |
|
auto kernels = cv::gapi::kernels<custom::OCVParseSSD, custom::OCVToMosaic>(); |
|
auto networks = cv::gapi::networks(plate_net, face_net); |
|
|
|
cv::TickMeter tm; |
|
cv::Mat out_frame; |
|
std::size_t frames = 0u; |
|
std::cout << "Reading " << input << std::endl; |
|
|
|
if (run_trad) { |
|
cv::Mat in_frame; |
|
cv::VideoCapture cap(input); |
|
cap >> in_frame; |
|
|
|
auto exec = graph.compile(cv::descr_of(in_frame), cv::compile_args(kernels, networks)); |
|
tm.start(); |
|
do { |
|
exec(in_frame, out_frame); |
|
if (!no_show) { |
|
cv::imshow("Out", out_frame); |
|
cv::waitKey(1); |
|
} |
|
frames++; |
|
} while (cap.read(in_frame)); |
|
tm.stop(); |
|
} else { |
|
auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks)); |
|
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input)); |
|
pipeline.start(); |
|
tm.start(); |
|
|
|
while (pipeline.pull(cv::gout(out_frame))) { |
|
frames++; |
|
if (!no_show) { |
|
cv::imshow("Out", out_frame); |
|
cv::waitKey(1); |
|
} |
|
} |
|
|
|
tm.stop(); |
|
} |
|
|
|
std::cout << "Processed " << frames << " frames" |
|
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; |
|
return 0; |
|
}
|
|
|