mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
721 lines
22 KiB
721 lines
22 KiB
/* |
|
* jcdctmgr.c |
|
* |
|
* This file was part of the Independent JPEG Group's software: |
|
* Copyright (C) 1994-1996, Thomas G. Lane. |
|
* libjpeg-turbo Modifications: |
|
* Copyright (C) 1999-2006, MIYASAKA Masaru. |
|
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
|
* Copyright (C) 2011, 2014-2015, D. R. Commander. |
|
* For conditions of distribution and use, see the accompanying README.ijg |
|
* file. |
|
* |
|
* This file contains the forward-DCT management logic. |
|
* This code selects a particular DCT implementation to be used, |
|
* and it performs related housekeeping chores including coefficient |
|
* quantization. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jdct.h" /* Private declarations for DCT subsystem */ |
|
#include "jsimddct.h" |
|
|
|
|
|
/* Private subobject for this module */ |
|
|
|
typedef void (*forward_DCT_method_ptr) (DCTELEM *data); |
|
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); |
|
|
|
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, |
|
JDIMENSION start_col, |
|
DCTELEM *workspace); |
|
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, |
|
JDIMENSION start_col, |
|
FAST_FLOAT *workspace); |
|
|
|
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, |
|
DCTELEM *workspace); |
|
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, |
|
FAST_FLOAT *divisors, |
|
FAST_FLOAT *workspace); |
|
|
|
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); |
|
|
|
typedef struct { |
|
struct jpeg_forward_dct pub; /* public fields */ |
|
|
|
/* Pointer to the DCT routine actually in use */ |
|
forward_DCT_method_ptr dct; |
|
convsamp_method_ptr convsamp; |
|
quantize_method_ptr quantize; |
|
|
|
/* The actual post-DCT divisors --- not identical to the quant table |
|
* entries, because of scaling (especially for an unnormalized DCT). |
|
* Each table is given in normal array order. |
|
*/ |
|
DCTELEM *divisors[NUM_QUANT_TBLS]; |
|
|
|
/* work area for FDCT subroutine */ |
|
DCTELEM *workspace; |
|
|
|
#ifdef DCT_FLOAT_SUPPORTED |
|
/* Same as above for the floating-point case. */ |
|
float_DCT_method_ptr float_dct; |
|
float_convsamp_method_ptr float_convsamp; |
|
float_quantize_method_ptr float_quantize; |
|
FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; |
|
FAST_FLOAT *float_workspace; |
|
#endif |
|
} my_fdct_controller; |
|
|
|
typedef my_fdct_controller *my_fdct_ptr; |
|
|
|
|
|
#if BITS_IN_JSAMPLE == 8 |
|
|
|
/* |
|
* Find the highest bit in an integer through binary search. |
|
*/ |
|
|
|
LOCAL(int) |
|
flss(UINT16 val) |
|
{ |
|
int bit; |
|
|
|
bit = 16; |
|
|
|
if (!val) |
|
return 0; |
|
|
|
if (!(val & 0xff00)) { |
|
bit -= 8; |
|
val <<= 8; |
|
} |
|
if (!(val & 0xf000)) { |
|
bit -= 4; |
|
val <<= 4; |
|
} |
|
if (!(val & 0xc000)) { |
|
bit -= 2; |
|
val <<= 2; |
|
} |
|
if (!(val & 0x8000)) { |
|
bit -= 1; |
|
val <<= 1; |
|
} |
|
|
|
return bit; |
|
} |
|
|
|
|
|
/* |
|
* Compute values to do a division using reciprocal. |
|
* |
|
* This implementation is based on an algorithm described in |
|
* "How to optimize for the Pentium family of microprocessors" |
|
* (http://www.agner.org/assem/). |
|
* More information about the basic algorithm can be found in |
|
* the paper "Integer Division Using Reciprocals" by Robert Alverson. |
|
* |
|
* The basic idea is to replace x/d by x * d^-1. In order to store |
|
* d^-1 with enough precision we shift it left a few places. It turns |
|
* out that this algoright gives just enough precision, and also fits |
|
* into DCTELEM: |
|
* |
|
* b = (the number of significant bits in divisor) - 1 |
|
* r = (word size) + b |
|
* f = 2^r / divisor |
|
* |
|
* f will not be an integer for most cases, so we need to compensate |
|
* for the rounding error introduced: |
|
* |
|
* no fractional part: |
|
* |
|
* result = input >> r |
|
* |
|
* fractional part of f < 0.5: |
|
* |
|
* round f down to nearest integer |
|
* result = ((input + 1) * f) >> r |
|
* |
|
* fractional part of f > 0.5: |
|
* |
|
* round f up to nearest integer |
|
* result = (input * f) >> r |
|
* |
|
* This is the original algorithm that gives truncated results. But we |
|
* want properly rounded results, so we replace "input" with |
|
* "input + divisor/2". |
|
* |
|
* In order to allow SIMD implementations we also tweak the values to |
|
* allow the same calculation to be made at all times: |
|
* |
|
* dctbl[0] = f rounded to nearest integer |
|
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
|
* dctbl[2] = 1 << ((word size) * 2 - r) |
|
* dctbl[3] = r - (word size) |
|
* |
|
* dctbl[2] is for stupid instruction sets where the shift operation |
|
* isn't member wise (e.g. MMX). |
|
* |
|
* The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
|
* is that most SIMD implementations have a "multiply and store top |
|
* half" operation. |
|
* |
|
* Lastly, we store each of the values in their own table instead |
|
* of in a consecutive manner, yet again in order to allow SIMD |
|
* routines. |
|
*/ |
|
|
|
LOCAL(int) |
|
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) |
|
{ |
|
UDCTELEM2 fq, fr; |
|
UDCTELEM c; |
|
int b, r; |
|
|
|
if (divisor == 1) { |
|
/* divisor == 1 means unquantized, so these reciprocal/correction/shift |
|
* values will cause the C quantization algorithm to act like the |
|
* identity function. Since only the C quantization algorithm is used in |
|
* these cases, the scale value is irrelevant. |
|
*/ |
|
dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ |
|
dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ |
|
dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ |
|
dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ |
|
return 0; |
|
} |
|
|
|
b = flss(divisor) - 1; |
|
r = sizeof(DCTELEM) * 8 + b; |
|
|
|
fq = ((UDCTELEM2)1 << r) / divisor; |
|
fr = ((UDCTELEM2)1 << r) % divisor; |
|
|
|
c = divisor / 2; /* for rounding */ |
|
|
|
if (fr == 0) { /* divisor is power of two */ |
|
/* fq will be one bit too large to fit in DCTELEM, so adjust */ |
|
fq >>= 1; |
|
r--; |
|
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ |
|
c++; |
|
} else { /* fractional part is > 0.5 */ |
|
fq++; |
|
} |
|
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ |
|
dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ |
|
#ifdef WITH_SIMD |
|
dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ |
|
#else |
|
dtbl[DCTSIZE2 * 2] = 1; |
|
#endif |
|
dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ |
|
|
|
if (r <= 16) return 0; |
|
else return 1; |
|
} |
|
|
|
#endif |
|
|
|
|
|
/* |
|
* Initialize for a processing pass. |
|
* Verify that all referenced Q-tables are present, and set up |
|
* the divisor table for each one. |
|
* In the current implementation, DCT of all components is done during |
|
* the first pass, even if only some components will be output in the |
|
* first scan. Hence all components should be examined here. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_fdctmgr(j_compress_ptr cinfo) |
|
{ |
|
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
|
int ci, qtblno, i; |
|
jpeg_component_info *compptr; |
|
JQUANT_TBL *qtbl; |
|
DCTELEM *dtbl; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
qtblno = compptr->quant_tbl_no; |
|
/* Make sure specified quantization table is present */ |
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
|
cinfo->quant_tbl_ptrs[qtblno] == NULL) |
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
|
qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
|
/* Compute divisors for this quant table */ |
|
/* We may do this more than once for same table, but it's not a big deal */ |
|
switch (cinfo->dct_method) { |
|
#ifdef DCT_ISLOW_SUPPORTED |
|
case JDCT_ISLOW: |
|
/* For LL&M IDCT method, divisors are equal to raw quantization |
|
* coefficients multiplied by 8 (to counteract scaling). |
|
*/ |
|
if (fdct->divisors[qtblno] == NULL) { |
|
fdct->divisors[qtblno] = (DCTELEM *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
(DCTSIZE2 * 4) * sizeof(DCTELEM)); |
|
} |
|
dtbl = fdct->divisors[qtblno]; |
|
for (i = 0; i < DCTSIZE2; i++) { |
|
#if BITS_IN_JSAMPLE == 8 |
|
if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && |
|
fdct->quantize == jsimd_quantize) |
|
fdct->quantize = quantize; |
|
#else |
|
dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; |
|
#endif |
|
} |
|
break; |
|
#endif |
|
#ifdef DCT_IFAST_SUPPORTED |
|
case JDCT_IFAST: |
|
{ |
|
/* For AA&N IDCT method, divisors are equal to quantization |
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
|
* scalefactor[0] = 1 |
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
|
* We apply a further scale factor of 8. |
|
*/ |
|
#define CONST_BITS 14 |
|
static const INT16 aanscales[DCTSIZE2] = { |
|
/* precomputed values scaled up by 14 bits */ |
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
|
}; |
|
SHIFT_TEMPS |
|
|
|
if (fdct->divisors[qtblno] == NULL) { |
|
fdct->divisors[qtblno] = (DCTELEM *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
(DCTSIZE2 * 4) * sizeof(DCTELEM)); |
|
} |
|
dtbl = fdct->divisors[qtblno]; |
|
for (i = 0; i < DCTSIZE2; i++) { |
|
#if BITS_IN_JSAMPLE == 8 |
|
if (!compute_reciprocal( |
|
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
|
(JLONG)aanscales[i]), |
|
CONST_BITS - 3), &dtbl[i]) && |
|
fdct->quantize == jsimd_quantize) |
|
fdct->quantize = quantize; |
|
#else |
|
dtbl[i] = (DCTELEM) |
|
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
|
(JLONG)aanscales[i]), |
|
CONST_BITS - 3); |
|
#endif |
|
} |
|
} |
|
break; |
|
#endif |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
case JDCT_FLOAT: |
|
{ |
|
/* For float AA&N IDCT method, divisors are equal to quantization |
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
|
* scalefactor[0] = 1 |
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
|
* We apply a further scale factor of 8. |
|
* What's actually stored is 1/divisor so that the inner loop can |
|
* use a multiplication rather than a division. |
|
*/ |
|
FAST_FLOAT *fdtbl; |
|
int row, col; |
|
static const double aanscalefactor[DCTSIZE] = { |
|
1.0, 1.387039845, 1.306562965, 1.175875602, |
|
1.0, 0.785694958, 0.541196100, 0.275899379 |
|
}; |
|
|
|
if (fdct->float_divisors[qtblno] == NULL) { |
|
fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
DCTSIZE2 * sizeof(FAST_FLOAT)); |
|
} |
|
fdtbl = fdct->float_divisors[qtblno]; |
|
i = 0; |
|
for (row = 0; row < DCTSIZE; row++) { |
|
for (col = 0; col < DCTSIZE; col++) { |
|
fdtbl[i] = (FAST_FLOAT) |
|
(1.0 / (((double)qtbl->quantval[i] * |
|
aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
|
i++; |
|
} |
|
} |
|
} |
|
break; |
|
#endif |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Load data into workspace, applying unsigned->signed conversion. |
|
*/ |
|
|
|
METHODDEF(void) |
|
convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) |
|
{ |
|
register DCTELEM *workspaceptr; |
|
register JSAMPROW elemptr; |
|
register int elemr; |
|
|
|
workspaceptr = workspace; |
|
for (elemr = 0; elemr < DCTSIZE; elemr++) { |
|
elemptr = sample_data[elemr] + start_col; |
|
|
|
#if DCTSIZE == 8 /* unroll the inner loop */ |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
#else |
|
{ |
|
register int elemc; |
|
for (elemc = DCTSIZE; elemc > 0; elemc--) |
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Quantize/descale the coefficients, and store into coef_blocks[]. |
|
*/ |
|
|
|
METHODDEF(void) |
|
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) |
|
{ |
|
int i; |
|
DCTELEM temp; |
|
JCOEFPTR output_ptr = coef_block; |
|
|
|
#if BITS_IN_JSAMPLE == 8 |
|
|
|
UDCTELEM recip, corr; |
|
int shift; |
|
UDCTELEM2 product; |
|
|
|
for (i = 0; i < DCTSIZE2; i++) { |
|
temp = workspace[i]; |
|
recip = divisors[i + DCTSIZE2 * 0]; |
|
corr = divisors[i + DCTSIZE2 * 1]; |
|
shift = divisors[i + DCTSIZE2 * 3]; |
|
|
|
if (temp < 0) { |
|
temp = -temp; |
|
product = (UDCTELEM2)(temp + corr) * recip; |
|
product >>= shift + sizeof(DCTELEM) * 8; |
|
temp = (DCTELEM)product; |
|
temp = -temp; |
|
} else { |
|
product = (UDCTELEM2)(temp + corr) * recip; |
|
product >>= shift + sizeof(DCTELEM) * 8; |
|
temp = (DCTELEM)product; |
|
} |
|
output_ptr[i] = (JCOEF)temp; |
|
} |
|
|
|
#else |
|
|
|
register DCTELEM qval; |
|
|
|
for (i = 0; i < DCTSIZE2; i++) { |
|
qval = divisors[i]; |
|
temp = workspace[i]; |
|
/* Divide the coefficient value by qval, ensuring proper rounding. |
|
* Since C does not specify the direction of rounding for negative |
|
* quotients, we have to force the dividend positive for portability. |
|
* |
|
* In most files, at least half of the output values will be zero |
|
* (at default quantization settings, more like three-quarters...) |
|
* so we should ensure that this case is fast. On many machines, |
|
* a comparison is enough cheaper than a divide to make a special test |
|
* a win. Since both inputs will be nonnegative, we need only test |
|
* for a < b to discover whether a/b is 0. |
|
* If your machine's division is fast enough, define FAST_DIVIDE. |
|
*/ |
|
#ifdef FAST_DIVIDE |
|
#define DIVIDE_BY(a, b) a /= b |
|
#else |
|
#define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 |
|
#endif |
|
if (temp < 0) { |
|
temp = -temp; |
|
temp += qval >> 1; /* for rounding */ |
|
DIVIDE_BY(temp, qval); |
|
temp = -temp; |
|
} else { |
|
temp += qval >> 1; /* for rounding */ |
|
DIVIDE_BY(temp, qval); |
|
} |
|
output_ptr[i] = (JCOEF)temp; |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
/* |
|
* Perform forward DCT on one or more blocks of a component. |
|
* |
|
* The input samples are taken from the sample_data[] array starting at |
|
* position start_row/start_col, and moving to the right for any additional |
|
* blocks. The quantized coefficients are returned in coef_blocks[]. |
|
*/ |
|
|
|
METHODDEF(void) |
|
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, |
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
|
JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) |
|
/* This version is used for integer DCT implementations. */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding it tightly. */ |
|
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
|
DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; |
|
DCTELEM *workspace; |
|
JDIMENSION bi; |
|
|
|
/* Make sure the compiler doesn't look up these every pass */ |
|
forward_DCT_method_ptr do_dct = fdct->dct; |
|
convsamp_method_ptr do_convsamp = fdct->convsamp; |
|
quantize_method_ptr do_quantize = fdct->quantize; |
|
workspace = fdct->workspace; |
|
|
|
sample_data += start_row; /* fold in the vertical offset once */ |
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
|
/* Load data into workspace, applying unsigned->signed conversion */ |
|
(*do_convsamp) (sample_data, start_col, workspace); |
|
|
|
/* Perform the DCT */ |
|
(*do_dct) (workspace); |
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
|
(*do_quantize) (coef_blocks[bi], divisors, workspace); |
|
} |
|
} |
|
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED |
|
|
|
METHODDEF(void) |
|
convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, |
|
FAST_FLOAT *workspace) |
|
{ |
|
register FAST_FLOAT *workspaceptr; |
|
register JSAMPROW elemptr; |
|
register int elemr; |
|
|
|
workspaceptr = workspace; |
|
for (elemr = 0; elemr < DCTSIZE; elemr++) { |
|
elemptr = sample_data[elemr] + start_col; |
|
#if DCTSIZE == 8 /* unroll the inner loop */ |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
#else |
|
{ |
|
register int elemc; |
|
for (elemc = DCTSIZE; elemc > 0; elemc--) |
|
*workspaceptr++ = (FAST_FLOAT) |
|
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, |
|
FAST_FLOAT *workspace) |
|
{ |
|
register FAST_FLOAT temp; |
|
register int i; |
|
register JCOEFPTR output_ptr = coef_block; |
|
|
|
for (i = 0; i < DCTSIZE2; i++) { |
|
/* Apply the quantization and scaling factor */ |
|
temp = workspace[i] * divisors[i]; |
|
|
|
/* Round to nearest integer. |
|
* Since C does not specify the direction of rounding for negative |
|
* quotients, we have to force the dividend positive for portability. |
|
* The maximum coefficient size is +-16K (for 12-bit data), so this |
|
* code should work for either 16-bit or 32-bit ints. |
|
*/ |
|
output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); |
|
} |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, |
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
|
JDIMENSION start_row, JDIMENSION start_col, |
|
JDIMENSION num_blocks) |
|
/* This version is used for floating-point DCT implementations. */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding it tightly. */ |
|
my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
|
FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
|
FAST_FLOAT *workspace; |
|
JDIMENSION bi; |
|
|
|
|
|
/* Make sure the compiler doesn't look up these every pass */ |
|
float_DCT_method_ptr do_dct = fdct->float_dct; |
|
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
|
float_quantize_method_ptr do_quantize = fdct->float_quantize; |
|
workspace = fdct->float_workspace; |
|
|
|
sample_data += start_row; /* fold in the vertical offset once */ |
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
|
/* Load data into workspace, applying unsigned->signed conversion */ |
|
(*do_convsamp) (sample_data, start_col, workspace); |
|
|
|
/* Perform the DCT */ |
|
(*do_dct) (workspace); |
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
|
(*do_quantize) (coef_blocks[bi], divisors, workspace); |
|
} |
|
} |
|
|
|
#endif /* DCT_FLOAT_SUPPORTED */ |
|
|
|
|
|
/* |
|
* Initialize FDCT manager. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_forward_dct(j_compress_ptr cinfo) |
|
{ |
|
my_fdct_ptr fdct; |
|
int i; |
|
|
|
fdct = (my_fdct_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
sizeof(my_fdct_controller)); |
|
cinfo->fdct = (struct jpeg_forward_dct *)fdct; |
|
fdct->pub.start_pass = start_pass_fdctmgr; |
|
|
|
/* First determine the DCT... */ |
|
switch (cinfo->dct_method) { |
|
#ifdef DCT_ISLOW_SUPPORTED |
|
case JDCT_ISLOW: |
|
fdct->pub.forward_DCT = forward_DCT; |
|
if (jsimd_can_fdct_islow()) |
|
fdct->dct = jsimd_fdct_islow; |
|
else |
|
fdct->dct = jpeg_fdct_islow; |
|
break; |
|
#endif |
|
#ifdef DCT_IFAST_SUPPORTED |
|
case JDCT_IFAST: |
|
fdct->pub.forward_DCT = forward_DCT; |
|
if (jsimd_can_fdct_ifast()) |
|
fdct->dct = jsimd_fdct_ifast; |
|
else |
|
fdct->dct = jpeg_fdct_ifast; |
|
break; |
|
#endif |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
case JDCT_FLOAT: |
|
fdct->pub.forward_DCT = forward_DCT_float; |
|
if (jsimd_can_fdct_float()) |
|
fdct->float_dct = jsimd_fdct_float; |
|
else |
|
fdct->float_dct = jpeg_fdct_float; |
|
break; |
|
#endif |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
break; |
|
} |
|
|
|
/* ...then the supporting stages. */ |
|
switch (cinfo->dct_method) { |
|
#ifdef DCT_ISLOW_SUPPORTED |
|
case JDCT_ISLOW: |
|
#endif |
|
#ifdef DCT_IFAST_SUPPORTED |
|
case JDCT_IFAST: |
|
#endif |
|
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
|
if (jsimd_can_convsamp()) |
|
fdct->convsamp = jsimd_convsamp; |
|
else |
|
fdct->convsamp = convsamp; |
|
if (jsimd_can_quantize()) |
|
fdct->quantize = jsimd_quantize; |
|
else |
|
fdct->quantize = quantize; |
|
break; |
|
#endif |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
case JDCT_FLOAT: |
|
if (jsimd_can_convsamp_float()) |
|
fdct->float_convsamp = jsimd_convsamp_float; |
|
else |
|
fdct->float_convsamp = convsamp_float; |
|
if (jsimd_can_quantize_float()) |
|
fdct->float_quantize = jsimd_quantize_float; |
|
else |
|
fdct->float_quantize = quantize_float; |
|
break; |
|
#endif |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
break; |
|
} |
|
|
|
/* Allocate workspace memory */ |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
if (cinfo->dct_method == JDCT_FLOAT) |
|
fdct->float_workspace = (FAST_FLOAT *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
sizeof(FAST_FLOAT) * DCTSIZE2); |
|
else |
|
#endif |
|
fdct->workspace = (DCTELEM *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
sizeof(DCTELEM) * DCTSIZE2); |
|
|
|
/* Mark divisor tables unallocated */ |
|
for (i = 0; i < NUM_QUANT_TBLS; i++) { |
|
fdct->divisors[i] = NULL; |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
fdct->float_divisors[i] = NULL; |
|
#endif |
|
} |
|
}
|
|
|