Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
822 lines
30 KiB
822 lines
30 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu> |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2020, Intel Corporation, all rights reserved. |
|
|
|
/**********************************************************************************************\ |
|
Implementation of SIFT is based on the code from http://blogs.oregonstate.edu/hess/code/sift/ |
|
Below is the original copyright. |
|
Patent US6711293 expired in March 2020. |
|
|
|
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu> |
|
// All rights reserved. |
|
|
|
// The following patent has been issued for methods embodied in this |
|
// software: "Method and apparatus for identifying scale invariant features |
|
// in an image and use of same for locating an object in an image," David |
|
// G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application |
|
// filed March 8, 1999. Asignee: The University of British Columbia. For |
|
// further details, contact David Lowe (lowe@cs.ubc.ca) or the |
|
// University-Industry Liaison Office of the University of British |
|
// Columbia. |
|
|
|
// Note that restrictions imposed by this patent (and possibly others) |
|
// exist independently of and may be in conflict with the freedoms granted |
|
// in this license, which refers to copyright of the program, not patents |
|
// for any methods that it implements. Both copyright and patent law must |
|
// be obeyed to legally use and redistribute this program and it is not the |
|
// purpose of this license to induce you to infringe any patents or other |
|
// property right claims or to contest validity of any such claims. If you |
|
// redistribute or use the program, then this license merely protects you |
|
// from committing copyright infringement. It does not protect you from |
|
// committing patent infringement. So, before you do anything with this |
|
// program, make sure that you have permission to do so not merely in terms |
|
// of copyright, but also in terms of patent law. |
|
|
|
// Please note that this license is not to be understood as a guarantee |
|
// either. If you use the program according to this license, but in |
|
// conflict with patent law, it does not mean that the licensor will refund |
|
// you for any losses that you incur if you are sued for your patent |
|
// infringement. |
|
|
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// * Redistributions of source code must retain the above copyright and |
|
// patent notices, this list of conditions and the following |
|
// disclaimer. |
|
// * Redistributions in binary form must reproduce the above copyright |
|
// notice, this list of conditions and the following disclaimer in |
|
// the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Oregon State University nor the names of its |
|
// contributors may be used to endorse or promote products derived |
|
// from this software without specific prior written permission. |
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
|
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
|
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
\**********************************************************************************************/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#include <opencv2/core/hal/hal.hpp> |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include <opencv2/core/utils/buffer_area.private.hpp> |
|
|
|
namespace cv { |
|
|
|
#if !defined(CV_CPU_DISPATCH_MODE) || !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) |
|
/******************************* Defs and macros *****************************/ |
|
|
|
// default width of descriptor histogram array |
|
static const int SIFT_DESCR_WIDTH = 4; |
|
|
|
// default number of bins per histogram in descriptor array |
|
static const int SIFT_DESCR_HIST_BINS = 8; |
|
|
|
// assumed gaussian blur for input image |
|
static const float SIFT_INIT_SIGMA = 0.5f; |
|
|
|
// width of border in which to ignore keypoints |
|
static const int SIFT_IMG_BORDER = 5; |
|
|
|
// maximum steps of keypoint interpolation before failure |
|
static const int SIFT_MAX_INTERP_STEPS = 5; |
|
|
|
// default number of bins in histogram for orientation assignment |
|
static const int SIFT_ORI_HIST_BINS = 36; |
|
|
|
// determines gaussian sigma for orientation assignment |
|
static const float SIFT_ORI_SIG_FCTR = 1.5f; |
|
|
|
// determines the radius of the region used in orientation assignment |
|
static const float SIFT_ORI_RADIUS = 4.5f; // 3 * SIFT_ORI_SIG_FCTR; |
|
|
|
// orientation magnitude relative to max that results in new feature |
|
static const float SIFT_ORI_PEAK_RATIO = 0.8f; |
|
|
|
// determines the size of a single descriptor orientation histogram |
|
static const float SIFT_DESCR_SCL_FCTR = 3.f; |
|
|
|
// threshold on magnitude of elements of descriptor vector |
|
static const float SIFT_DESCR_MAG_THR = 0.2f; |
|
|
|
// factor used to convert floating-point descriptor to unsigned char |
|
static const float SIFT_INT_DESCR_FCTR = 512.f; |
|
|
|
#define DoG_TYPE_SHORT 0 |
|
#if DoG_TYPE_SHORT |
|
// intermediate type used for DoG pyramids |
|
typedef short sift_wt; |
|
static const int SIFT_FIXPT_SCALE = 48; |
|
#else |
|
// intermediate type used for DoG pyramids |
|
typedef float sift_wt; |
|
static const int SIFT_FIXPT_SCALE = 1; |
|
#endif |
|
|
|
#endif // definitions and macros |
|
|
|
|
|
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN |
|
|
|
void findScaleSpaceExtrema( |
|
int octave, |
|
int layer, |
|
int threshold, |
|
int idx, |
|
int step, |
|
int cols, |
|
int nOctaveLayers, |
|
double contrastThreshold, |
|
double edgeThreshold, |
|
double sigma, |
|
const std::vector<Mat>& gauss_pyr, |
|
const std::vector<Mat>& dog_pyr, |
|
std::vector<KeyPoint>& kpts, |
|
const cv::Range& range); |
|
|
|
void calcSIFTDescriptor( |
|
const Mat& img, Point2f ptf, float ori, float scl, |
|
int d, int n, float* dst |
|
); |
|
|
|
|
|
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY |
|
|
|
// Computes a gradient orientation histogram at a specified pixel |
|
static |
|
float calcOrientationHist( |
|
const Mat& img, Point pt, int radius, |
|
float sigma, float* hist, int n |
|
) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
int i, j, k, len = (radius*2+1)*(radius*2+1); |
|
|
|
float expf_scale = -1.f/(2.f * sigma * sigma); |
|
|
|
cv::utils::BufferArea area; |
|
float *X = 0, *Y = 0, *Mag, *Ori = 0, *W = 0, *temphist = 0; |
|
area.allocate(X, len, CV_SIMD_WIDTH); |
|
area.allocate(Y, len, CV_SIMD_WIDTH); |
|
area.allocate(Ori, len, CV_SIMD_WIDTH); |
|
area.allocate(W, len, CV_SIMD_WIDTH); |
|
area.allocate(temphist, n+4, CV_SIMD_WIDTH); |
|
area.commit(); |
|
temphist += 2; |
|
Mag = X; |
|
|
|
for( i = 0; i < n; i++ ) |
|
temphist[i] = 0.f; |
|
|
|
for( i = -radius, k = 0; i <= radius; i++ ) |
|
{ |
|
int y = pt.y + i; |
|
if( y <= 0 || y >= img.rows - 1 ) |
|
continue; |
|
for( j = -radius; j <= radius; j++ ) |
|
{ |
|
int x = pt.x + j; |
|
if( x <= 0 || x >= img.cols - 1 ) |
|
continue; |
|
|
|
float dx = (float)(img.at<sift_wt>(y, x+1) - img.at<sift_wt>(y, x-1)); |
|
float dy = (float)(img.at<sift_wt>(y-1, x) - img.at<sift_wt>(y+1, x)); |
|
|
|
X[k] = dx; Y[k] = dy; W[k] = (i*i + j*j)*expf_scale; |
|
k++; |
|
} |
|
} |
|
|
|
len = k; |
|
|
|
// compute gradient values, orientations and the weights over the pixel neighborhood |
|
cv::hal::exp32f(W, W, len); |
|
cv::hal::fastAtan2(Y, X, Ori, len, true); |
|
cv::hal::magnitude32f(X, Y, Mag, len); |
|
|
|
k = 0; |
|
#if CV_SIMD |
|
const int vecsize = v_float32::nlanes; |
|
v_float32 nd360 = vx_setall_f32(n/360.f); |
|
v_int32 __n = vx_setall_s32(n); |
|
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) bin_buf[vecsize]; |
|
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) w_mul_mag_buf[vecsize]; |
|
|
|
for( ; k <= len - vecsize; k += vecsize ) |
|
{ |
|
v_float32 w = vx_load_aligned( W + k ); |
|
v_float32 mag = vx_load_aligned( Mag + k ); |
|
v_float32 ori = vx_load_aligned( Ori + k ); |
|
v_int32 bin = v_round( nd360 * ori ); |
|
|
|
bin = v_select(bin >= __n, bin - __n, bin); |
|
bin = v_select(bin < vx_setzero_s32(), bin + __n, bin); |
|
|
|
w = w * mag; |
|
v_store_aligned(bin_buf, bin); |
|
v_store_aligned(w_mul_mag_buf, w); |
|
for(int vi = 0; vi < vecsize; vi++) |
|
{ |
|
temphist[bin_buf[vi]] += w_mul_mag_buf[vi]; |
|
} |
|
} |
|
#endif |
|
for( ; k < len; k++ ) |
|
{ |
|
int bin = cvRound((n/360.f)*Ori[k]); |
|
if( bin >= n ) |
|
bin -= n; |
|
if( bin < 0 ) |
|
bin += n; |
|
temphist[bin] += W[k]*Mag[k]; |
|
} |
|
|
|
// smooth the histogram |
|
temphist[-1] = temphist[n-1]; |
|
temphist[-2] = temphist[n-2]; |
|
temphist[n] = temphist[0]; |
|
temphist[n+1] = temphist[1]; |
|
|
|
i = 0; |
|
#if CV_SIMD |
|
v_float32 d_1_16 = vx_setall_f32(1.f/16.f); |
|
v_float32 d_4_16 = vx_setall_f32(4.f/16.f); |
|
v_float32 d_6_16 = vx_setall_f32(6.f/16.f); |
|
for( ; i <= n - v_float32::nlanes; i += v_float32::nlanes ) |
|
{ |
|
v_float32 tn2 = vx_load_aligned(temphist + i-2); |
|
v_float32 tn1 = vx_load(temphist + i-1); |
|
v_float32 t0 = vx_load(temphist + i); |
|
v_float32 t1 = vx_load(temphist + i+1); |
|
v_float32 t2 = vx_load(temphist + i+2); |
|
v_float32 _hist = v_fma(tn2 + t2, d_1_16, |
|
v_fma(tn1 + t1, d_4_16, t0 * d_6_16)); |
|
v_store(hist + i, _hist); |
|
} |
|
#endif |
|
for( ; i < n; i++ ) |
|
{ |
|
hist[i] = (temphist[i-2] + temphist[i+2])*(1.f/16.f) + |
|
(temphist[i-1] + temphist[i+1])*(4.f/16.f) + |
|
temphist[i]*(6.f/16.f); |
|
} |
|
|
|
float maxval = hist[0]; |
|
for( i = 1; i < n; i++ ) |
|
maxval = std::max(maxval, hist[i]); |
|
|
|
return maxval; |
|
} |
|
|
|
|
|
// |
|
// Interpolates a scale-space extremum's location and scale to subpixel |
|
// accuracy to form an image feature. Rejects features with low contrast. |
|
// Based on Section 4 of Lowe's paper. |
|
static |
|
bool adjustLocalExtrema( |
|
const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv, |
|
int& layer, int& r, int& c, int nOctaveLayers, |
|
float contrastThreshold, float edgeThreshold, float sigma |
|
) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
const float img_scale = 1.f/(255*SIFT_FIXPT_SCALE); |
|
const float deriv_scale = img_scale*0.5f; |
|
const float second_deriv_scale = img_scale; |
|
const float cross_deriv_scale = img_scale*0.25f; |
|
|
|
float xi=0, xr=0, xc=0, contr=0; |
|
int i = 0; |
|
|
|
for( ; i < SIFT_MAX_INTERP_STEPS; i++ ) |
|
{ |
|
int idx = octv*(nOctaveLayers+2) + layer; |
|
const Mat& img = dog_pyr[idx]; |
|
const Mat& prev = dog_pyr[idx-1]; |
|
const Mat& next = dog_pyr[idx+1]; |
|
|
|
Vec3f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale, |
|
(img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale, |
|
(next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale); |
|
|
|
float v2 = (float)img.at<sift_wt>(r, c)*2; |
|
float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale; |
|
float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale; |
|
float dss = (next.at<sift_wt>(r, c) + prev.at<sift_wt>(r, c) - v2)*second_deriv_scale; |
|
float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) - |
|
img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1))*cross_deriv_scale; |
|
float dxs = (next.at<sift_wt>(r, c+1) - next.at<sift_wt>(r, c-1) - |
|
prev.at<sift_wt>(r, c+1) + prev.at<sift_wt>(r, c-1))*cross_deriv_scale; |
|
float dys = (next.at<sift_wt>(r+1, c) - next.at<sift_wt>(r-1, c) - |
|
prev.at<sift_wt>(r+1, c) + prev.at<sift_wt>(r-1, c))*cross_deriv_scale; |
|
|
|
Matx33f H(dxx, dxy, dxs, |
|
dxy, dyy, dys, |
|
dxs, dys, dss); |
|
|
|
Vec3f X = H.solve(dD, DECOMP_LU); |
|
|
|
xi = -X[2]; |
|
xr = -X[1]; |
|
xc = -X[0]; |
|
|
|
if( std::abs(xi) < 0.5f && std::abs(xr) < 0.5f && std::abs(xc) < 0.5f ) |
|
break; |
|
|
|
if( std::abs(xi) > (float)(INT_MAX/3) || |
|
std::abs(xr) > (float)(INT_MAX/3) || |
|
std::abs(xc) > (float)(INT_MAX/3) ) |
|
return false; |
|
|
|
c += cvRound(xc); |
|
r += cvRound(xr); |
|
layer += cvRound(xi); |
|
|
|
if( layer < 1 || layer > nOctaveLayers || |
|
c < SIFT_IMG_BORDER || c >= img.cols - SIFT_IMG_BORDER || |
|
r < SIFT_IMG_BORDER || r >= img.rows - SIFT_IMG_BORDER ) |
|
return false; |
|
} |
|
|
|
// ensure convergence of interpolation |
|
if( i >= SIFT_MAX_INTERP_STEPS ) |
|
return false; |
|
|
|
{ |
|
int idx = octv*(nOctaveLayers+2) + layer; |
|
const Mat& img = dog_pyr[idx]; |
|
const Mat& prev = dog_pyr[idx-1]; |
|
const Mat& next = dog_pyr[idx+1]; |
|
Matx31f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale, |
|
(img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale, |
|
(next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale); |
|
float t = dD.dot(Matx31f(xc, xr, xi)); |
|
|
|
contr = img.at<sift_wt>(r, c)*img_scale + t * 0.5f; |
|
if( std::abs( contr ) * nOctaveLayers < contrastThreshold ) |
|
return false; |
|
|
|
// principal curvatures are computed using the trace and det of Hessian |
|
float v2 = img.at<sift_wt>(r, c)*2.f; |
|
float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale; |
|
float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale; |
|
float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) - |
|
img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1)) * cross_deriv_scale; |
|
float tr = dxx + dyy; |
|
float det = dxx * dyy - dxy * dxy; |
|
|
|
if( det <= 0 || tr*tr*edgeThreshold >= (edgeThreshold + 1)*(edgeThreshold + 1)*det ) |
|
return false; |
|
} |
|
|
|
kpt.pt.x = (c + xc) * (1 << octv); |
|
kpt.pt.y = (r + xr) * (1 << octv); |
|
kpt.octave = octv + (layer << 8) + (cvRound((xi + 0.5)*255) << 16); |
|
kpt.size = sigma*powf(2.f, (layer + xi) / nOctaveLayers)*(1 << octv)*2; |
|
kpt.response = std::abs(contr); |
|
|
|
return true; |
|
} |
|
|
|
namespace { |
|
|
|
class findScaleSpaceExtremaT |
|
{ |
|
public: |
|
findScaleSpaceExtremaT( |
|
int _o, |
|
int _i, |
|
int _threshold, |
|
int _idx, |
|
int _step, |
|
int _cols, |
|
int _nOctaveLayers, |
|
double _contrastThreshold, |
|
double _edgeThreshold, |
|
double _sigma, |
|
const std::vector<Mat>& _gauss_pyr, |
|
const std::vector<Mat>& _dog_pyr, |
|
std::vector<KeyPoint>& kpts) |
|
|
|
: o(_o), |
|
i(_i), |
|
threshold(_threshold), |
|
idx(_idx), |
|
step(_step), |
|
cols(_cols), |
|
nOctaveLayers(_nOctaveLayers), |
|
contrastThreshold(_contrastThreshold), |
|
edgeThreshold(_edgeThreshold), |
|
sigma(_sigma), |
|
gauss_pyr(_gauss_pyr), |
|
dog_pyr(_dog_pyr), |
|
kpts_(kpts) |
|
{ |
|
// nothing |
|
} |
|
void process(const cv::Range& range) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
const int begin = range.start; |
|
const int end = range.end; |
|
|
|
static const int n = SIFT_ORI_HIST_BINS; |
|
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) hist[n]; |
|
|
|
const Mat& img = dog_pyr[idx]; |
|
const Mat& prev = dog_pyr[idx-1]; |
|
const Mat& next = dog_pyr[idx+1]; |
|
|
|
for( int r = begin; r < end; r++) |
|
{ |
|
const sift_wt* currptr = img.ptr<sift_wt>(r); |
|
const sift_wt* prevptr = prev.ptr<sift_wt>(r); |
|
const sift_wt* nextptr = next.ptr<sift_wt>(r); |
|
|
|
for( int c = SIFT_IMG_BORDER; c < cols-SIFT_IMG_BORDER; c++) |
|
{ |
|
sift_wt val = currptr[c]; |
|
|
|
// find local extrema with pixel accuracy |
|
if( std::abs(val) > threshold && |
|
((val > 0 && val >= currptr[c-1] && val >= currptr[c+1] && |
|
val >= currptr[c-step-1] && val >= currptr[c-step] && val >= currptr[c-step+1] && |
|
val >= currptr[c+step-1] && val >= currptr[c+step] && val >= currptr[c+step+1] && |
|
val >= nextptr[c] && val >= nextptr[c-1] && val >= nextptr[c+1] && |
|
val >= nextptr[c-step-1] && val >= nextptr[c-step] && val >= nextptr[c-step+1] && |
|
val >= nextptr[c+step-1] && val >= nextptr[c+step] && val >= nextptr[c+step+1] && |
|
val >= prevptr[c] && val >= prevptr[c-1] && val >= prevptr[c+1] && |
|
val >= prevptr[c-step-1] && val >= prevptr[c-step] && val >= prevptr[c-step+1] && |
|
val >= prevptr[c+step-1] && val >= prevptr[c+step] && val >= prevptr[c+step+1]) || |
|
(val < 0 && val <= currptr[c-1] && val <= currptr[c+1] && |
|
val <= currptr[c-step-1] && val <= currptr[c-step] && val <= currptr[c-step+1] && |
|
val <= currptr[c+step-1] && val <= currptr[c+step] && val <= currptr[c+step+1] && |
|
val <= nextptr[c] && val <= nextptr[c-1] && val <= nextptr[c+1] && |
|
val <= nextptr[c-step-1] && val <= nextptr[c-step] && val <= nextptr[c-step+1] && |
|
val <= nextptr[c+step-1] && val <= nextptr[c+step] && val <= nextptr[c+step+1] && |
|
val <= prevptr[c] && val <= prevptr[c-1] && val <= prevptr[c+1] && |
|
val <= prevptr[c-step-1] && val <= prevptr[c-step] && val <= prevptr[c-step+1] && |
|
val <= prevptr[c+step-1] && val <= prevptr[c+step] && val <= prevptr[c+step+1]))) |
|
{ |
|
CV_TRACE_REGION("pixel_candidate"); |
|
|
|
KeyPoint kpt; |
|
int r1 = r, c1 = c, layer = i; |
|
if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1, |
|
nOctaveLayers, (float)contrastThreshold, |
|
(float)edgeThreshold, (float)sigma) ) |
|
continue; |
|
float scl_octv = kpt.size*0.5f/(1 << o); |
|
float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+3) + layer], |
|
Point(c1, r1), |
|
cvRound(SIFT_ORI_RADIUS * scl_octv), |
|
SIFT_ORI_SIG_FCTR * scl_octv, |
|
hist, n); |
|
float mag_thr = (float)(omax * SIFT_ORI_PEAK_RATIO); |
|
for( int j = 0; j < n; j++ ) |
|
{ |
|
int l = j > 0 ? j - 1 : n - 1; |
|
int r2 = j < n-1 ? j + 1 : 0; |
|
|
|
if( hist[j] > hist[l] && hist[j] > hist[r2] && hist[j] >= mag_thr ) |
|
{ |
|
float bin = j + 0.5f * (hist[l]-hist[r2]) / (hist[l] - 2*hist[j] + hist[r2]); |
|
bin = bin < 0 ? n + bin : bin >= n ? bin - n : bin; |
|
kpt.angle = 360.f - (float)((360.f/n) * bin); |
|
if(std::abs(kpt.angle - 360.f) < FLT_EPSILON) |
|
kpt.angle = 0.f; |
|
|
|
kpts_.push_back(kpt); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
private: |
|
int o, i; |
|
int threshold; |
|
int idx, step, cols; |
|
int nOctaveLayers; |
|
double contrastThreshold; |
|
double edgeThreshold; |
|
double sigma; |
|
const std::vector<Mat>& gauss_pyr; |
|
const std::vector<Mat>& dog_pyr; |
|
std::vector<KeyPoint>& kpts_; |
|
}; |
|
|
|
} // namespace |
|
|
|
|
|
void findScaleSpaceExtrema( |
|
int octave, |
|
int layer, |
|
int threshold, |
|
int idx, |
|
int step, |
|
int cols, |
|
int nOctaveLayers, |
|
double contrastThreshold, |
|
double edgeThreshold, |
|
double sigma, |
|
const std::vector<Mat>& gauss_pyr, |
|
const std::vector<Mat>& dog_pyr, |
|
std::vector<KeyPoint>& kpts, |
|
const cv::Range& range) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
findScaleSpaceExtremaT(octave, layer, threshold, idx, |
|
step, cols, |
|
nOctaveLayers, contrastThreshold, edgeThreshold, sigma, |
|
gauss_pyr, dog_pyr, |
|
kpts) |
|
.process(range); |
|
} |
|
|
|
void calcSIFTDescriptor( |
|
const Mat& img, Point2f ptf, float ori, float scl, |
|
int d, int n, float* dst |
|
) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
Point pt(cvRound(ptf.x), cvRound(ptf.y)); |
|
float cos_t = cosf(ori*(float)(CV_PI/180)); |
|
float sin_t = sinf(ori*(float)(CV_PI/180)); |
|
float bins_per_rad = n / 360.f; |
|
float exp_scale = -1.f/(d * d * 0.5f); |
|
float hist_width = SIFT_DESCR_SCL_FCTR * scl; |
|
int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f); |
|
// Clip the radius to the diagonal of the image to avoid autobuffer too large exception |
|
radius = std::min(radius, (int)std::sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows)); |
|
cos_t /= hist_width; |
|
sin_t /= hist_width; |
|
|
|
int i, j, k, len = (radius*2+1)*(radius*2+1), histlen = (d+2)*(d+2)*(n+2); |
|
int rows = img.rows, cols = img.cols; |
|
|
|
AutoBuffer<float> buf(len*6 + histlen); |
|
float *X = buf.data(), *Y = X + len, *Mag = Y, *Ori = Mag + len, *W = Ori + len; |
|
float *RBin = W + len, *CBin = RBin + len, *hist = CBin + len; |
|
|
|
for( i = 0; i < d+2; i++ ) |
|
{ |
|
for( j = 0; j < d+2; j++ ) |
|
for( k = 0; k < n+2; k++ ) |
|
hist[(i*(d+2) + j)*(n+2) + k] = 0.; |
|
} |
|
|
|
for( i = -radius, k = 0; i <= radius; i++ ) |
|
for( j = -radius; j <= radius; j++ ) |
|
{ |
|
// Calculate sample's histogram array coords rotated relative to ori. |
|
// Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e. |
|
// r_rot = 1.5) have full weight placed in row 1 after interpolation. |
|
float c_rot = j * cos_t - i * sin_t; |
|
float r_rot = j * sin_t + i * cos_t; |
|
float rbin = r_rot + d/2 - 0.5f; |
|
float cbin = c_rot + d/2 - 0.5f; |
|
int r = pt.y + i, c = pt.x + j; |
|
|
|
if( rbin > -1 && rbin < d && cbin > -1 && cbin < d && |
|
r > 0 && r < rows - 1 && c > 0 && c < cols - 1 ) |
|
{ |
|
float dx = (float)(img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1)); |
|
float dy = (float)(img.at<sift_wt>(r-1, c) - img.at<sift_wt>(r+1, c)); |
|
X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin; |
|
W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale; |
|
k++; |
|
} |
|
} |
|
|
|
len = k; |
|
cv::hal::fastAtan2(Y, X, Ori, len, true); |
|
cv::hal::magnitude32f(X, Y, Mag, len); |
|
cv::hal::exp32f(W, W, len); |
|
|
|
k = 0; |
|
#if CV_SIMD |
|
{ |
|
const int vecsize = v_float32::nlanes; |
|
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) idx_buf[vecsize]; |
|
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rco_buf[8*vecsize]; |
|
const v_float32 __ori = vx_setall_f32(ori); |
|
const v_float32 __bins_per_rad = vx_setall_f32(bins_per_rad); |
|
const v_int32 __n = vx_setall_s32(n); |
|
const v_int32 __1 = vx_setall_s32(1); |
|
const v_int32 __d_plus_2 = vx_setall_s32(d+2); |
|
const v_int32 __n_plus_2 = vx_setall_s32(n+2); |
|
for( ; k <= len - vecsize; k += vecsize ) |
|
{ |
|
v_float32 rbin = vx_load(RBin + k); |
|
v_float32 cbin = vx_load(CBin + k); |
|
v_float32 obin = (vx_load(Ori + k) - __ori) * __bins_per_rad; |
|
v_float32 mag = vx_load(Mag + k) * vx_load(W + k); |
|
|
|
v_int32 r0 = v_floor(rbin); |
|
v_int32 c0 = v_floor(cbin); |
|
v_int32 o0 = v_floor(obin); |
|
rbin -= v_cvt_f32(r0); |
|
cbin -= v_cvt_f32(c0); |
|
obin -= v_cvt_f32(o0); |
|
|
|
o0 = v_select(o0 < vx_setzero_s32(), o0 + __n, o0); |
|
o0 = v_select(o0 >= __n, o0 - __n, o0); |
|
|
|
v_float32 v_r1 = mag*rbin, v_r0 = mag - v_r1; |
|
v_float32 v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11; |
|
v_float32 v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01; |
|
v_float32 v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111; |
|
v_float32 v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101; |
|
v_float32 v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011; |
|
v_float32 v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001; |
|
|
|
v_int32 idx = v_muladd(v_muladd(r0+__1, __d_plus_2, c0+__1), __n_plus_2, o0); |
|
v_store_aligned(idx_buf, idx); |
|
|
|
v_store_aligned(rco_buf, v_rco000); |
|
v_store_aligned(rco_buf+vecsize, v_rco001); |
|
v_store_aligned(rco_buf+vecsize*2, v_rco010); |
|
v_store_aligned(rco_buf+vecsize*3, v_rco011); |
|
v_store_aligned(rco_buf+vecsize*4, v_rco100); |
|
v_store_aligned(rco_buf+vecsize*5, v_rco101); |
|
v_store_aligned(rco_buf+vecsize*6, v_rco110); |
|
v_store_aligned(rco_buf+vecsize*7, v_rco111); |
|
|
|
for(int id = 0; id < vecsize; id++) |
|
{ |
|
hist[idx_buf[id]] += rco_buf[id]; |
|
hist[idx_buf[id]+1] += rco_buf[vecsize + id]; |
|
hist[idx_buf[id]+(n+2)] += rco_buf[2*vecsize + id]; |
|
hist[idx_buf[id]+(n+3)] += rco_buf[3*vecsize + id]; |
|
hist[idx_buf[id]+(d+2)*(n+2)] += rco_buf[4*vecsize + id]; |
|
hist[idx_buf[id]+(d+2)*(n+2)+1] += rco_buf[5*vecsize + id]; |
|
hist[idx_buf[id]+(d+3)*(n+2)] += rco_buf[6*vecsize + id]; |
|
hist[idx_buf[id]+(d+3)*(n+2)+1] += rco_buf[7*vecsize + id]; |
|
} |
|
} |
|
} |
|
#endif |
|
for( ; k < len; k++ ) |
|
{ |
|
float rbin = RBin[k], cbin = CBin[k]; |
|
float obin = (Ori[k] - ori)*bins_per_rad; |
|
float mag = Mag[k]*W[k]; |
|
|
|
int r0 = cvFloor( rbin ); |
|
int c0 = cvFloor( cbin ); |
|
int o0 = cvFloor( obin ); |
|
rbin -= r0; |
|
cbin -= c0; |
|
obin -= o0; |
|
|
|
if( o0 < 0 ) |
|
o0 += n; |
|
if( o0 >= n ) |
|
o0 -= n; |
|
|
|
// histogram update using tri-linear interpolation |
|
float v_r1 = mag*rbin, v_r0 = mag - v_r1; |
|
float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11; |
|
float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01; |
|
float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111; |
|
float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101; |
|
float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011; |
|
float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001; |
|
|
|
int idx = ((r0+1)*(d+2) + c0+1)*(n+2) + o0; |
|
hist[idx] += v_rco000; |
|
hist[idx+1] += v_rco001; |
|
hist[idx+(n+2)] += v_rco010; |
|
hist[idx+(n+3)] += v_rco011; |
|
hist[idx+(d+2)*(n+2)] += v_rco100; |
|
hist[idx+(d+2)*(n+2)+1] += v_rco101; |
|
hist[idx+(d+3)*(n+2)] += v_rco110; |
|
hist[idx+(d+3)*(n+2)+1] += v_rco111; |
|
} |
|
|
|
// finalize histogram, since the orientation histograms are circular |
|
for( i = 0; i < d; i++ ) |
|
for( j = 0; j < d; j++ ) |
|
{ |
|
int idx = ((i+1)*(d+2) + (j+1))*(n+2); |
|
hist[idx] += hist[idx+n]; |
|
hist[idx+1] += hist[idx+n+1]; |
|
for( k = 0; k < n; k++ ) |
|
dst[(i*d + j)*n + k] = hist[idx+k]; |
|
} |
|
// copy histogram to the descriptor, |
|
// apply hysteresis thresholding |
|
// and scale the result, so that it can be easily converted |
|
// to byte array |
|
float nrm2 = 0; |
|
len = d*d*n; |
|
k = 0; |
|
#if CV_SIMD |
|
{ |
|
v_float32 __nrm2 = vx_setzero_f32(); |
|
v_float32 __dst; |
|
for( ; k <= len - v_float32::nlanes; k += v_float32::nlanes ) |
|
{ |
|
__dst = vx_load(dst + k); |
|
__nrm2 = v_fma(__dst, __dst, __nrm2); |
|
} |
|
nrm2 = (float)v_reduce_sum(__nrm2); |
|
} |
|
#endif |
|
for( ; k < len; k++ ) |
|
nrm2 += dst[k]*dst[k]; |
|
|
|
float thr = std::sqrt(nrm2)*SIFT_DESCR_MAG_THR; |
|
|
|
i = 0, nrm2 = 0; |
|
#if 0 //CV_AVX2 |
|
// This code cannot be enabled because it sums nrm2 in a different order, |
|
// thus producing slightly different results |
|
{ |
|
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) nrm2_buf[8]; |
|
__m256 __dst; |
|
__m256 __nrm2 = _mm256_setzero_ps(); |
|
__m256 __thr = _mm256_set1_ps(thr); |
|
for( ; i <= len - 8; i += 8 ) |
|
{ |
|
__dst = _mm256_loadu_ps(&dst[i]); |
|
__dst = _mm256_min_ps(__dst, __thr); |
|
_mm256_storeu_ps(&dst[i], __dst); |
|
#if CV_FMA3 |
|
__nrm2 = _mm256_fmadd_ps(__dst, __dst, __nrm2); |
|
#else |
|
__nrm2 = _mm256_add_ps(__nrm2, _mm256_mul_ps(__dst, __dst)); |
|
#endif |
|
} |
|
_mm256_store_ps(nrm2_buf, __nrm2); |
|
nrm2 = nrm2_buf[0] + nrm2_buf[1] + nrm2_buf[2] + nrm2_buf[3] + |
|
nrm2_buf[4] + nrm2_buf[5] + nrm2_buf[6] + nrm2_buf[7]; |
|
} |
|
#endif |
|
for( ; i < len; i++ ) |
|
{ |
|
float val = std::min(dst[i], thr); |
|
dst[i] = val; |
|
nrm2 += val*val; |
|
} |
|
nrm2 = SIFT_INT_DESCR_FCTR/std::max(std::sqrt(nrm2), FLT_EPSILON); |
|
|
|
#if 1 |
|
k = 0; |
|
#if CV_SIMD |
|
{ |
|
v_float32 __dst; |
|
v_float32 __min = vx_setzero_f32(); |
|
v_float32 __max = vx_setall_f32(255.0f); // max of uchar |
|
v_float32 __nrm2 = vx_setall_f32(nrm2); |
|
for( k = 0; k <= len - v_float32::nlanes; k += v_float32::nlanes ) |
|
{ |
|
__dst = vx_load(dst + k); |
|
__dst = v_min(v_max(v_cvt_f32(v_round(__dst * __nrm2)), __min), __max); |
|
v_store(dst + k, __dst); |
|
} |
|
} |
|
#endif |
|
for( ; k < len; k++ ) |
|
{ |
|
dst[k] = saturate_cast<uchar>(dst[k]*nrm2); |
|
} |
|
#else |
|
float nrm1 = 0; |
|
for( k = 0; k < len; k++ ) |
|
{ |
|
dst[k] *= nrm2; |
|
nrm1 += dst[k]; |
|
} |
|
nrm1 = 1.f/std::max(nrm1, FLT_EPSILON); |
|
for( k = 0; k < len; k++ ) |
|
{ |
|
dst[k] = std::sqrt(dst[k] * nrm1);//saturate_cast<uchar>(std::sqrt(dst[k] * nrm1)*SIFT_INT_DESCR_FCTR); |
|
} |
|
#endif |
|
} |
|
|
|
#endif |
|
CV_CPU_OPTIMIZATION_NAMESPACE_END |
|
} // namespace
|
|
|