mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
876 lines
29 KiB
876 lines
29 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
static void |
|
thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type ) |
|
{ |
|
int i, j, j_scalar = 0; |
|
uchar tab[256]; |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
|
|
if( _src.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::thresh_8u(_src, _dst, roi.width, roi.height, thresh, maxval, type)) |
|
return; |
|
#endif |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( i = 0; i <= thresh; i++ ) |
|
tab[i] = 0; |
|
for( ; i < 256; i++ ) |
|
tab[i] = maxval; |
|
break; |
|
case THRESH_BINARY_INV: |
|
for( i = 0; i <= thresh; i++ ) |
|
tab[i] = maxval; |
|
for( ; i < 256; i++ ) |
|
tab[i] = 0; |
|
break; |
|
case THRESH_TRUNC: |
|
for( i = 0; i <= thresh; i++ ) |
|
tab[i] = (uchar)i; |
|
for( ; i < 256; i++ ) |
|
tab[i] = thresh; |
|
break; |
|
case THRESH_TOZERO: |
|
for( i = 0; i <= thresh; i++ ) |
|
tab[i] = 0; |
|
for( ; i < 256; i++ ) |
|
tab[i] = (uchar)i; |
|
break; |
|
case THRESH_TOZERO_INV: |
|
for( i = 0; i <= thresh; i++ ) |
|
tab[i] = (uchar)i; |
|
for( ; i < 256; i++ ) |
|
tab[i] = 0; |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "Unknown threshold type" ); |
|
} |
|
|
|
#if CV_SSE2 |
|
if( checkHardwareSupport(CV_CPU_SSE2) ) |
|
{ |
|
__m128i _x80 = _mm_set1_epi8('\x80'); |
|
__m128i thresh_u = _mm_set1_epi8(thresh); |
|
__m128i thresh_s = _mm_set1_epi8(thresh ^ 0x80); |
|
__m128i maxval_ = _mm_set1_epi8(maxval); |
|
j_scalar = roi.width & -8; |
|
|
|
for( i = 0; i < roi.height; i++ ) |
|
{ |
|
const uchar* src = (const uchar*)(_src.data + _src.step*i); |
|
uchar* dst = (uchar*)(_dst.data + _dst.step*i); |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( j = 0; j <= roi.width - 32; j += 32 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); |
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); |
|
v1 = _mm_cmpgt_epi8( _mm_xor_si128(v1, _x80), thresh_s ); |
|
v0 = _mm_and_si128( v0, maxval_ ); |
|
v1 = _mm_and_si128( v1, maxval_ ); |
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); |
|
} |
|
|
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); |
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); |
|
v0 = _mm_and_si128( v0, maxval_ ); |
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 ); |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( j = 0; j <= roi.width - 32; j += 32 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); |
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); |
|
v1 = _mm_cmpgt_epi8( _mm_xor_si128(v1, _x80), thresh_s ); |
|
v0 = _mm_andnot_si128( v0, maxval_ ); |
|
v1 = _mm_andnot_si128( v1, maxval_ ); |
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); |
|
} |
|
|
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); |
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); |
|
v0 = _mm_andnot_si128( v0, maxval_ ); |
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 ); |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( j = 0; j <= roi.width - 32; j += 32 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); |
|
v0 = _mm_subs_epu8( v0, _mm_subs_epu8( v0, thresh_u )); |
|
v1 = _mm_subs_epu8( v1, _mm_subs_epu8( v1, thresh_u )); |
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); |
|
} |
|
|
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); |
|
v0 = _mm_subs_epu8( v0, _mm_subs_epu8( v0, thresh_u )); |
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 ); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( j = 0; j <= roi.width - 32; j += 32 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); |
|
v0 = _mm_and_si128( v0, _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s )); |
|
v1 = _mm_and_si128( v1, _mm_cmpgt_epi8(_mm_xor_si128(v1, _x80), thresh_s )); |
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); |
|
} |
|
|
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); |
|
v0 = _mm_and_si128( v0, _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s )); |
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 ); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( j = 0; j <= roi.width - 32; j += 32 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); |
|
v0 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ), v0 ); |
|
v1 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v1, _x80), thresh_s ), v1 ); |
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); |
|
} |
|
|
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); |
|
v0 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ), v0 ); |
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 ); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
if( j_scalar < roi.width ) |
|
{ |
|
for( i = 0; i < roi.height; i++ ) |
|
{ |
|
const uchar* src = (const uchar*)(_src.data + _src.step*i); |
|
uchar* dst = (uchar*)(_dst.data + _dst.step*i); |
|
j = j_scalar; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
uchar t0 = tab[src[j]]; |
|
uchar t1 = tab[src[j+1]]; |
|
|
|
dst[j] = t0; |
|
dst[j+1] = t1; |
|
|
|
t0 = tab[src[j+2]]; |
|
t1 = tab[src[j+3]]; |
|
|
|
dst[j+2] = t0; |
|
dst[j+3] = t1; |
|
} |
|
#endif |
|
for( ; j < roi.width; j++ ) |
|
dst[j] = tab[src[j]]; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
thresh_16s( const Mat& _src, Mat& _dst, short thresh, short maxval, int type ) |
|
{ |
|
int i, j; |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
const short* src = (const short*)_src.data; |
|
short* dst = (short*)_dst.data; |
|
size_t src_step = _src.step/sizeof(src[0]); |
|
size_t dst_step = _dst.step/sizeof(dst[0]); |
|
|
|
#if CV_SSE2 |
|
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE); |
|
#endif |
|
|
|
if( _src.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::thresh_16s(_src, _dst, roi.width, roi.height, thresh, maxval, type)) |
|
return; |
|
#endif |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128i thresh8 = _mm_set1_epi16(thresh), maxval8 = _mm_set1_epi16(maxval); |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); |
|
v0 = _mm_cmpgt_epi16( v0, thresh8 ); |
|
v1 = _mm_cmpgt_epi16( v1, thresh8 ); |
|
v0 = _mm_and_si128( v0, maxval8 ); |
|
v1 = _mm_and_si128( v1, maxval8 ); |
|
_mm_storeu_si128((__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = src[j] > thresh ? maxval : 0; |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128i thresh8 = _mm_set1_epi16(thresh), maxval8 = _mm_set1_epi16(maxval); |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); |
|
v0 = _mm_cmpgt_epi16( v0, thresh8 ); |
|
v1 = _mm_cmpgt_epi16( v1, thresh8 ); |
|
v0 = _mm_andnot_si128( v0, maxval8 ); |
|
v1 = _mm_andnot_si128( v1, maxval8 ); |
|
_mm_storeu_si128((__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = src[j] <= thresh ? maxval : 0; |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128i thresh8 = _mm_set1_epi16(thresh); |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); |
|
v0 = _mm_min_epi16( v0, thresh8 ); |
|
v1 = _mm_min_epi16( v1, thresh8 ); |
|
_mm_storeu_si128((__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = std::min(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128i thresh8 = _mm_set1_epi16(thresh); |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); |
|
v0 = _mm_and_si128(v0, _mm_cmpgt_epi16(v0, thresh8)); |
|
v1 = _mm_and_si128(v1, _mm_cmpgt_epi16(v1, thresh8)); |
|
_mm_storeu_si128((__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
{ |
|
short v = src[j]; |
|
dst[j] = v > thresh ? v : 0; |
|
} |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128i thresh8 = _mm_set1_epi16(thresh); |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
__m128i v0, v1; |
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); |
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); |
|
v0 = _mm_andnot_si128(_mm_cmpgt_epi16(v0, thresh8), v0); |
|
v1 = _mm_andnot_si128(_mm_cmpgt_epi16(v1, thresh8), v1); |
|
_mm_storeu_si128((__m128i*)(dst + j), v0 ); |
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); |
|
} |
|
} |
|
#endif |
|
for( ; j < roi.width; j++ ) |
|
{ |
|
short v = src[j]; |
|
dst[j] = v <= thresh ? v : 0; |
|
} |
|
} |
|
break; |
|
default: |
|
return CV_Error( CV_StsBadArg, "" ); |
|
} |
|
} |
|
|
|
|
|
static void |
|
thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type ) |
|
{ |
|
int i, j; |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
const float* src = (const float*)_src.data; |
|
float* dst = (float*)_dst.data; |
|
size_t src_step = _src.step/sizeof(src[0]); |
|
size_t dst_step = _dst.step/sizeof(dst[0]); |
|
|
|
#if CV_SSE2 |
|
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE); |
|
#endif |
|
|
|
if( _src.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::thresh_32f(_src, _dst, roi.width, roi.height, thresh, maxval, type)) |
|
return; |
|
#endif |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128 thresh4 = _mm_set1_ps(thresh), maxval4 = _mm_set1_ps(maxval); |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128 v0, v1; |
|
v0 = _mm_loadu_ps( src + j ); |
|
v1 = _mm_loadu_ps( src + j + 4 ); |
|
v0 = _mm_cmpgt_ps( v0, thresh4 ); |
|
v1 = _mm_cmpgt_ps( v1, thresh4 ); |
|
v0 = _mm_and_ps( v0, maxval4 ); |
|
v1 = _mm_and_ps( v1, maxval4 ); |
|
_mm_storeu_ps( dst + j, v0 ); |
|
_mm_storeu_ps( dst + j + 4, v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = src[j] > thresh ? maxval : 0; |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128 thresh4 = _mm_set1_ps(thresh), maxval4 = _mm_set1_ps(maxval); |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128 v0, v1; |
|
v0 = _mm_loadu_ps( src + j ); |
|
v1 = _mm_loadu_ps( src + j + 4 ); |
|
v0 = _mm_cmple_ps( v0, thresh4 ); |
|
v1 = _mm_cmple_ps( v1, thresh4 ); |
|
v0 = _mm_and_ps( v0, maxval4 ); |
|
v1 = _mm_and_ps( v1, maxval4 ); |
|
_mm_storeu_ps( dst + j, v0 ); |
|
_mm_storeu_ps( dst + j + 4, v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = src[j] <= thresh ? maxval : 0; |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128 thresh4 = _mm_set1_ps(thresh); |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128 v0, v1; |
|
v0 = _mm_loadu_ps( src + j ); |
|
v1 = _mm_loadu_ps( src + j + 4 ); |
|
v0 = _mm_min_ps( v0, thresh4 ); |
|
v1 = _mm_min_ps( v1, thresh4 ); |
|
_mm_storeu_ps( dst + j, v0 ); |
|
_mm_storeu_ps( dst + j + 4, v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = std::min(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128 thresh4 = _mm_set1_ps(thresh); |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128 v0, v1; |
|
v0 = _mm_loadu_ps( src + j ); |
|
v1 = _mm_loadu_ps( src + j + 4 ); |
|
v0 = _mm_and_ps(v0, _mm_cmpgt_ps(v0, thresh4)); |
|
v1 = _mm_and_ps(v1, _mm_cmpgt_ps(v1, thresh4)); |
|
_mm_storeu_ps( dst + j, v0 ); |
|
_mm_storeu_ps( dst + j + 4, v1 ); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < roi.width; j++ ) |
|
{ |
|
float v = src[j]; |
|
dst[j] = v > thresh ? v : 0; |
|
} |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128 thresh4 = _mm_set1_ps(thresh); |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
__m128 v0, v1; |
|
v0 = _mm_loadu_ps( src + j ); |
|
v1 = _mm_loadu_ps( src + j + 4 ); |
|
v0 = _mm_and_ps(v0, _mm_cmple_ps(v0, thresh4)); |
|
v1 = _mm_and_ps(v1, _mm_cmple_ps(v1, thresh4)); |
|
_mm_storeu_ps( dst + j, v0 ); |
|
_mm_storeu_ps( dst + j + 4, v1 ); |
|
} |
|
} |
|
#endif |
|
for( ; j < roi.width; j++ ) |
|
{ |
|
float v = src[j]; |
|
dst[j] = v <= thresh ? v : 0; |
|
} |
|
} |
|
break; |
|
default: |
|
return CV_Error( CV_StsBadArg, "" ); |
|
} |
|
} |
|
|
|
|
|
static double |
|
getThreshVal_Otsu_8u( const Mat& _src ) |
|
{ |
|
Size size = _src.size(); |
|
if( _src.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
const int N = 256; |
|
int i, j, h[N] = {0}; |
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const uchar* src = _src.data + _src.step*i; |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= size.width - 4; j += 4 ) |
|
{ |
|
int v0 = src[j], v1 = src[j+1]; |
|
h[v0]++; h[v1]++; |
|
v0 = src[j+2]; v1 = src[j+3]; |
|
h[v0]++; h[v1]++; |
|
} |
|
#endif |
|
for( ; j < size.width; j++ ) |
|
h[src[j]]++; |
|
} |
|
|
|
double mu = 0, scale = 1./(size.width*size.height); |
|
for( i = 0; i < N; i++ ) |
|
mu += i*(double)h[i]; |
|
|
|
mu *= scale; |
|
double mu1 = 0, q1 = 0; |
|
double max_sigma = 0, max_val = 0; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
double p_i, q2, mu2, sigma; |
|
|
|
p_i = h[i]*scale; |
|
mu1 *= q1; |
|
q1 += p_i; |
|
q2 = 1. - q1; |
|
|
|
if( std::min(q1,q2) < FLT_EPSILON || std::max(q1,q2) > 1. - FLT_EPSILON ) |
|
continue; |
|
|
|
mu1 = (mu1 + i*p_i)/q1; |
|
mu2 = (mu - q1*mu1)/q2; |
|
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2); |
|
if( sigma > max_sigma ) |
|
{ |
|
max_sigma = sigma; |
|
max_val = i; |
|
} |
|
} |
|
|
|
return max_val; |
|
} |
|
|
|
class ThresholdRunner : public ParallelLoopBody |
|
{ |
|
public: |
|
ThresholdRunner(Mat _src, Mat _dst, double _thresh, double _maxval, int _thresholdType) |
|
{ |
|
src = _src; |
|
dst = _dst; |
|
|
|
thresh = _thresh; |
|
maxval = _maxval; |
|
thresholdType = _thresholdType; |
|
} |
|
|
|
void operator () ( const Range& range ) const |
|
{ |
|
int row0 = range.start; |
|
int row1 = range.end; |
|
|
|
Mat srcStripe = src.rowRange(row0, row1); |
|
Mat dstStripe = dst.rowRange(row0, row1); |
|
|
|
if (srcStripe.depth() == CV_8U) |
|
{ |
|
thresh_8u( srcStripe, dstStripe, (uchar)thresh, (uchar)maxval, thresholdType ); |
|
} |
|
else if( srcStripe.depth() == CV_16S ) |
|
{ |
|
thresh_16s( srcStripe, dstStripe, (short)thresh, (short)maxval, thresholdType ); |
|
} |
|
else if( srcStripe.depth() == CV_32F ) |
|
{ |
|
thresh_32f( srcStripe, dstStripe, (float)thresh, (float)maxval, thresholdType ); |
|
} |
|
} |
|
|
|
private: |
|
Mat src; |
|
Mat dst; |
|
|
|
double thresh; |
|
double maxval; |
|
int thresholdType; |
|
}; |
|
|
|
} |
|
|
|
double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double maxval, int type ) |
|
{ |
|
Mat src = _src.getMat(); |
|
bool use_otsu = (type & THRESH_OTSU) != 0; |
|
type &= THRESH_MASK; |
|
|
|
if( use_otsu ) |
|
{ |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
thresh = getThreshVal_Otsu_8u(src); |
|
} |
|
|
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( src.depth() == CV_8U ) |
|
{ |
|
int ithresh = cvFloor(thresh); |
|
thresh = ithresh; |
|
int imaxval = cvRound(maxval); |
|
if( type == THRESH_TRUNC ) |
|
imaxval = ithresh; |
|
imaxval = saturate_cast<uchar>(imaxval); |
|
|
|
if( ithresh < 0 || ithresh >= 255 ) |
|
{ |
|
if( type == THRESH_BINARY || type == THRESH_BINARY_INV || |
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) || |
|
(type == THRESH_TOZERO && ithresh >= 255) ) |
|
{ |
|
int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) : |
|
type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) : |
|
/*type == THRESH_TRUNC ? imaxval :*/ 0; |
|
dst.setTo(v); |
|
} |
|
else |
|
src.copyTo(dst); |
|
return thresh; |
|
} |
|
thresh = ithresh; |
|
maxval = imaxval; |
|
} |
|
else if( src.depth() == CV_16S ) |
|
{ |
|
int ithresh = cvFloor(thresh); |
|
thresh = ithresh; |
|
int imaxval = cvRound(maxval); |
|
if( type == THRESH_TRUNC ) |
|
imaxval = ithresh; |
|
imaxval = saturate_cast<short>(imaxval); |
|
|
|
if( ithresh < SHRT_MIN || ithresh >= SHRT_MAX ) |
|
{ |
|
if( type == THRESH_BINARY || type == THRESH_BINARY_INV || |
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < SHRT_MIN) || |
|
(type == THRESH_TOZERO && ithresh >= SHRT_MAX) ) |
|
{ |
|
int v = type == THRESH_BINARY ? (ithresh >= SHRT_MAX ? 0 : imaxval) : |
|
type == THRESH_BINARY_INV ? (ithresh >= SHRT_MAX ? imaxval : 0) : |
|
/*type == THRESH_TRUNC ? imaxval :*/ 0; |
|
dst.setTo(v); |
|
} |
|
else |
|
src.copyTo(dst); |
|
return thresh; |
|
} |
|
thresh = ithresh; |
|
maxval = imaxval; |
|
} |
|
else if( src.depth() == CV_32F ) |
|
; |
|
else |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
|
|
parallel_for_(Range(0, dst.rows), |
|
ThresholdRunner(src, dst, thresh, maxval, type), |
|
dst.total()/(double)(1<<16)); |
|
return thresh; |
|
} |
|
|
|
|
|
void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue, |
|
int method, int type, int blockSize, double delta ) |
|
{ |
|
Mat src = _src.getMat(); |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
CV_Assert( blockSize % 2 == 1 && blockSize > 1 ); |
|
Size size = src.size(); |
|
|
|
_dst.create( size, src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( maxValue < 0 ) |
|
{ |
|
dst = Scalar(0); |
|
return; |
|
} |
|
|
|
Mat mean; |
|
|
|
if( src.data != dst.data ) |
|
mean = dst; |
|
|
|
if( method == ADAPTIVE_THRESH_MEAN_C ) |
|
boxFilter( src, mean, src.type(), Size(blockSize, blockSize), |
|
Point(-1,-1), true, BORDER_REPLICATE ); |
|
else if( method == ADAPTIVE_THRESH_GAUSSIAN_C ) |
|
GaussianBlur( src, mean, Size(blockSize, blockSize), 0, 0, BORDER_REPLICATE ); |
|
else |
|
CV_Error( CV_StsBadFlag, "Unknown/unsupported adaptive threshold method" ); |
|
|
|
int i, j; |
|
uchar imaxval = saturate_cast<uchar>(maxValue); |
|
int idelta = type == THRESH_BINARY ? cvCeil(delta) : cvFloor(delta); |
|
uchar tab[768]; |
|
|
|
if( type == CV_THRESH_BINARY ) |
|
for( i = 0; i < 768; i++ ) |
|
tab[i] = (uchar)(i - 255 > -idelta ? imaxval : 0); |
|
else if( type == CV_THRESH_BINARY_INV ) |
|
for( i = 0; i < 768; i++ ) |
|
tab[i] = (uchar)(i - 255 <= -idelta ? imaxval : 0); |
|
else |
|
CV_Error( CV_StsBadFlag, "Unknown/unsupported threshold type" ); |
|
|
|
if( src.isContinuous() && mean.isContinuous() && dst.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const uchar* sdata = src.data + src.step*i; |
|
const uchar* mdata = mean.data + mean.step*i; |
|
uchar* ddata = dst.data + dst.step*i; |
|
|
|
for( j = 0; j < size.width; j++ ) |
|
ddata[j] = tab[sdata[j] - mdata[j] + 255]; |
|
} |
|
} |
|
|
|
CV_IMPL double |
|
cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst; |
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() && |
|
(src.depth() == dst.depth() || dst.depth() == CV_8U)); |
|
|
|
thresh = cv::threshold( src, dst, thresh, maxval, type ); |
|
if( dst0.data != dst.data ) |
|
dst.convertTo( dst0, dst0.depth() ); |
|
return thresh; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvAdaptiveThreshold( const void *srcIm, void *dstIm, double maxValue, |
|
int method, int type, int blockSize, double delta ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcIm), dst = cv::cvarrToMat(dstIm); |
|
CV_Assert( src.size == dst.size && src.type() == dst.type() ); |
|
cv::adaptiveThreshold( src, dst, maxValue, method, type, blockSize, delta ); |
|
} |
|
|
|
/* End of file. */
|
|
|