mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1357 lines
51 KiB
1357 lines
51 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <limits.h> |
|
#include "opencl_kernels_imgproc.hpp" |
|
#include <iostream> |
|
#include "hal_replacement.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include <opencv2/core/utils/configuration.private.hpp> |
|
|
|
#include "morph.simd.hpp" |
|
#include "morph.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
|
|
|
|
|
/****************************************************************************************\ |
|
Basic Morphological Operations: Erosion & Dilation |
|
\****************************************************************************************/ |
|
|
|
namespace cv { |
|
|
|
/////////////////////////////////// External Interface ///////////////////////////////////// |
|
|
|
Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_CPU_DISPATCH(getMorphologyRowFilter, (op, type, ksize, anchor), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_CPU_DISPATCH(getMorphologyColumnFilter, (op, type, ksize, anchor), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
|
|
Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray _kernel, Point anchor) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat kernel = _kernel.getMat(); |
|
CV_CPU_DISPATCH(getMorphologyFilter, (op, type, kernel, anchor), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
|
|
Ptr<FilterEngine> createMorphologyFilter( |
|
int op, int type, InputArray _kernel, |
|
Point anchor, int _rowBorderType, int _columnBorderType, |
|
const Scalar& _borderValue) |
|
{ |
|
Mat kernel = _kernel.getMat(); |
|
anchor = normalizeAnchor(anchor, kernel.size()); |
|
|
|
Ptr<BaseRowFilter> rowFilter; |
|
Ptr<BaseColumnFilter> columnFilter; |
|
Ptr<BaseFilter> filter2D; |
|
|
|
if( countNonZero(kernel) == kernel.rows*kernel.cols ) |
|
{ |
|
// rectangular structuring element |
|
rowFilter = getMorphologyRowFilter(op, type, kernel.cols, anchor.x); |
|
columnFilter = getMorphologyColumnFilter(op, type, kernel.rows, anchor.y); |
|
} |
|
else |
|
filter2D = getMorphologyFilter(op, type, kernel, anchor); |
|
|
|
Scalar borderValue = _borderValue; |
|
if( (_rowBorderType == BORDER_CONSTANT || _columnBorderType == BORDER_CONSTANT) && |
|
borderValue == morphologyDefaultBorderValue() ) |
|
{ |
|
int depth = CV_MAT_DEPTH(type); |
|
CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_16S || |
|
depth == CV_32F || depth == CV_64F ); |
|
if( op == MORPH_ERODE ) |
|
borderValue = Scalar::all( depth == CV_8U ? (double)UCHAR_MAX : |
|
depth == CV_16U ? (double)USHRT_MAX : |
|
depth == CV_16S ? (double)SHRT_MAX : |
|
depth == CV_32F ? (double)FLT_MAX : DBL_MAX); |
|
else |
|
borderValue = Scalar::all( depth == CV_8U || depth == CV_16U ? |
|
0. : |
|
depth == CV_16S ? (double)SHRT_MIN : |
|
depth == CV_32F ? (double)-FLT_MAX : -DBL_MAX); |
|
} |
|
|
|
return makePtr<FilterEngine>(filter2D, rowFilter, columnFilter, |
|
type, type, type, _rowBorderType, _columnBorderType, borderValue ); |
|
} |
|
|
|
|
|
Mat getStructuringElement(int shape, Size ksize, Point anchor) |
|
{ |
|
int i, j; |
|
int r = 0, c = 0; |
|
double inv_r2 = 0; |
|
|
|
CV_Assert( shape == MORPH_RECT || shape == MORPH_CROSS || shape == MORPH_ELLIPSE ); |
|
|
|
anchor = normalizeAnchor(anchor, ksize); |
|
|
|
if( ksize == Size(1,1) ) |
|
shape = MORPH_RECT; |
|
|
|
if( shape == MORPH_ELLIPSE ) |
|
{ |
|
r = ksize.height/2; |
|
c = ksize.width/2; |
|
inv_r2 = r ? 1./((double)r*r) : 0; |
|
} |
|
|
|
Mat elem(ksize, CV_8U); |
|
|
|
for( i = 0; i < ksize.height; i++ ) |
|
{ |
|
uchar* ptr = elem.ptr(i); |
|
int j1 = 0, j2 = 0; |
|
|
|
if( shape == MORPH_RECT || (shape == MORPH_CROSS && i == anchor.y) ) |
|
j2 = ksize.width; |
|
else if( shape == MORPH_CROSS ) |
|
j1 = anchor.x, j2 = j1 + 1; |
|
else |
|
{ |
|
int dy = i - r; |
|
if( std::abs(dy) <= r ) |
|
{ |
|
int dx = saturate_cast<int>(c*std::sqrt((r*r - dy*dy)*inv_r2)); |
|
j1 = std::max( c - dx, 0 ); |
|
j2 = std::min( c + dx + 1, ksize.width ); |
|
} |
|
} |
|
|
|
for( j = 0; j < j1; j++ ) |
|
ptr[j] = 0; |
|
for( ; j < j2; j++ ) |
|
ptr[j] = 1; |
|
for( ; j < ksize.width; j++ ) |
|
ptr[j] = 0; |
|
} |
|
|
|
return elem; |
|
} |
|
|
|
// ===== 1. replacement implementation |
|
|
|
static bool halMorph(int op, int src_type, int dst_type, |
|
uchar * src_data, size_t src_step, |
|
uchar * dst_data, size_t dst_step, |
|
int width, int height, |
|
int roi_width, int roi_height, int roi_x, int roi_y, |
|
int roi_width2, int roi_height2, int roi_x2, int roi_y2, |
|
int kernel_type, uchar * kernel_data, size_t kernel_step, |
|
int kernel_width, int kernel_height, int anchor_x, int anchor_y, |
|
int borderType, const double borderValue[4], int iterations, bool isSubmatrix) |
|
{ |
|
cvhalFilter2D * ctx; |
|
int res = cv_hal_morphInit(&ctx, op, src_type, dst_type, width, height, |
|
kernel_type, kernel_data, kernel_step, kernel_width, kernel_height, |
|
anchor_x, anchor_y, |
|
borderType, borderValue, |
|
iterations, isSubmatrix, src_data == dst_data); |
|
if (res != CV_HAL_ERROR_OK) |
|
return false; |
|
|
|
res = cv_hal_morph(ctx, src_data, src_step, dst_data, dst_step, width, height, |
|
roi_width, roi_height, |
|
roi_x, roi_y, |
|
roi_width2, roi_height2, |
|
roi_x2, roi_y2); |
|
bool success = (res == CV_HAL_ERROR_OK); |
|
|
|
res = cv_hal_morphFree(ctx); |
|
if (res != CV_HAL_ERROR_OK) |
|
return false; |
|
|
|
return success; |
|
} |
|
|
|
// ===== 2. IPP implementation |
|
#ifdef HAVE_IPP |
|
#ifdef HAVE_IPP_IW |
|
static inline IwiMorphologyType ippiGetMorphologyType(int morphOp) |
|
{ |
|
return morphOp == MORPH_ERODE ? iwiMorphErode : |
|
morphOp == MORPH_DILATE ? iwiMorphDilate : |
|
morphOp == MORPH_OPEN ? iwiMorphOpen : |
|
morphOp == MORPH_CLOSE ? iwiMorphClose : |
|
morphOp == MORPH_GRADIENT ? iwiMorphGradient : |
|
morphOp == MORPH_TOPHAT ? iwiMorphTophat : |
|
morphOp == MORPH_BLACKHAT ? iwiMorphBlackhat : (IwiMorphologyType)-1; |
|
} |
|
#endif |
|
|
|
static bool ippMorph(int op, int src_type, int dst_type, |
|
const uchar * src_data, size_t src_step, |
|
uchar * dst_data, size_t dst_step, |
|
int width, int height, |
|
int roi_width, int roi_height, int roi_x, int roi_y, |
|
int roi_width2, int roi_height2, int roi_x2, int roi_y2, |
|
int kernel_type, uchar * kernel_data, size_t kernel_step, |
|
int kernel_width, int kernel_height, int anchor_x, int anchor_y, |
|
int borderType, const double borderValue[4], int iterations, bool isSubmatrix) |
|
{ |
|
#ifdef HAVE_IPP_IW |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
#if IPP_VERSION_X100 < 201800 |
|
// Problem with SSE42 optimizations performance |
|
if(cv::ipp::getIppTopFeatures() == ippCPUID_SSE42) |
|
return false; |
|
|
|
// Different mask flipping |
|
if(op == MORPH_GRADIENT) |
|
return false; |
|
|
|
// Integer overflow bug |
|
if(src_step >= IPP_MAX_32S || |
|
src_step*height >= IPP_MAX_32S) |
|
return false; |
|
#endif |
|
|
|
#if IPP_VERSION_X100 < 201801 |
|
// Problem with AVX512 optimizations performance |
|
if(cv::ipp::getIppTopFeatures()&ippCPUID_AVX512F) |
|
return false; |
|
|
|
// Multiple iterations on small mask is not effective in current integration |
|
// Implace imitation for 3x3 kernel is not efficient |
|
// Advanced morphology for small mask introduces degradations |
|
if((iterations > 1 || src_data == dst_data || (op != MORPH_ERODE && op != MORPH_DILATE)) && kernel_width*kernel_height < 25) |
|
return false; |
|
|
|
// Skip even mask sizes for advanced morphology since they can produce out of spec writes |
|
if((op != MORPH_ERODE && op != MORPH_DILATE) && (!(kernel_width&1) || !(kernel_height&1))) |
|
return false; |
|
#endif |
|
|
|
IppAutoBuffer<Ipp8u> kernelTempBuffer; |
|
::ipp::IwiBorderSize iwBorderSize; |
|
::ipp::IwiBorderSize iwBorderSize2; |
|
::ipp::IwiBorderType iwBorderType; |
|
::ipp::IwiBorderType iwBorderType2; |
|
::ipp::IwiImage iwMask; |
|
::ipp::IwiImage iwInter; |
|
::ipp::IwiSize initSize(width, height); |
|
::ipp::IwiSize kernelSize(kernel_width, kernel_height); |
|
IppDataType type = ippiGetDataType(CV_MAT_DEPTH(src_type)); |
|
int channels = CV_MAT_CN(src_type); |
|
IwiMorphologyType morphType = ippiGetMorphologyType(op); |
|
|
|
CV_UNUSED(isSubmatrix); |
|
|
|
if((int)morphType < 0) |
|
return false; |
|
|
|
if(iterations > 1 && morphType != iwiMorphErode && morphType != iwiMorphDilate) |
|
return false; |
|
|
|
if(src_type != dst_type) |
|
return false; |
|
|
|
if(!ippiCheckAnchor(anchor_x, anchor_y, kernel_width, kernel_height)) |
|
return false; |
|
|
|
try |
|
{ |
|
::ipp::IwiImage iwSrc(initSize, type, channels, ::ipp::IwiBorderSize(roi_x, roi_y, roi_width-roi_x-width, roi_height-roi_y-height), (void*)src_data, src_step); |
|
::ipp::IwiImage iwDst(initSize, type, channels, ::ipp::IwiBorderSize(roi_x2, roi_y2, roi_width2-roi_x2-width, roi_height2-roi_y2-height), (void*)dst_data, dst_step); |
|
|
|
iwBorderSize = ::ipp::iwiSizeToBorderSize(kernelSize); |
|
iwBorderType = ippiGetBorder(iwSrc, borderType, iwBorderSize); |
|
if(!iwBorderType) |
|
return false; |
|
if(iterations > 1) |
|
{ |
|
// Check dst border for second and later iterations |
|
iwBorderSize2 = ::ipp::iwiSizeToBorderSize(kernelSize); |
|
iwBorderType2 = ippiGetBorder(iwDst, borderType, iwBorderSize2); |
|
if(!iwBorderType2) |
|
return false; |
|
} |
|
|
|
if(morphType != iwiMorphErode && morphType != iwiMorphDilate && morphType != iwiMorphGradient) |
|
{ |
|
// For now complex morphology support only InMem around all sides. This will be improved later. |
|
if((iwBorderType&ippBorderInMem) && (iwBorderType&ippBorderInMem) != ippBorderInMem) |
|
return false; |
|
|
|
if((iwBorderType&ippBorderInMem) == ippBorderInMem) |
|
{ |
|
iwBorderType &= ~ippBorderInMem; |
|
iwBorderType &= ippBorderFirstStageInMem; |
|
} |
|
} |
|
|
|
if(iwBorderType.StripFlags() == ippBorderConst) |
|
{ |
|
if(Vec<double, 4>(borderValue) == morphologyDefaultBorderValue()) |
|
iwBorderType.SetType(ippBorderDefault); |
|
else |
|
iwBorderType.m_value = ::ipp::IwValueFloat(borderValue[0], borderValue[1], borderValue[2], borderValue[3]); |
|
} |
|
|
|
iwMask.Init(ippiSize(kernel_width, kernel_height), ippiGetDataType(CV_MAT_DEPTH(kernel_type)), CV_MAT_CN(kernel_type), 0, kernel_data, kernel_step); |
|
|
|
::ipp::IwiImage iwMaskLoc = iwMask; |
|
if(morphType == iwiMorphDilate) |
|
{ |
|
iwMaskLoc.Alloc(iwMask.m_size, iwMask.m_dataType, iwMask.m_channels); |
|
::ipp::iwiMirror(iwMask, iwMaskLoc, ippAxsBoth); |
|
iwMask = iwMaskLoc; |
|
} |
|
|
|
if(iterations > 1) |
|
{ |
|
// OpenCV uses in mem border from dst for two and more iterations, so we need to keep this border in intermediate image |
|
iwInter.Alloc(initSize, type, channels, iwBorderSize2); |
|
|
|
::ipp::IwiImage *pSwap[2] = {&iwInter, &iwDst}; |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterMorphology, iwSrc, iwInter, morphType, iwMask, ::ipp::IwDefault(), iwBorderType); |
|
|
|
// Copy border only |
|
{ |
|
if(iwBorderSize2.top) |
|
{ |
|
::ipp::IwiRoi borderRoi(-iwBorderSize2.left, -iwBorderSize2.top, iwDst.m_size.width+iwBorderSize2.left+iwBorderSize2.right, iwBorderSize2.top); |
|
::ipp::IwiImage iwInterRoi = iwInter.GetRoiImage(borderRoi); |
|
::ipp::iwiCopy(iwDst.GetRoiImage(borderRoi), iwInterRoi); |
|
} |
|
if(iwBorderSize2.bottom) |
|
{ |
|
::ipp::IwiRoi borderRoi(-iwBorderSize2.left, iwDst.m_size.height, iwDst.m_size.width+iwBorderSize2.left+iwBorderSize2.right, iwBorderSize2.bottom); |
|
::ipp::IwiImage iwInterRoi = iwInter.GetRoiImage(borderRoi); |
|
::ipp::iwiCopy(iwDst.GetRoiImage(borderRoi), iwInterRoi); |
|
} |
|
if(iwBorderSize2.left) |
|
{ |
|
::ipp::IwiRoi borderRoi(-iwBorderSize2.left, 0, iwBorderSize2.left, iwDst.m_size.height); |
|
::ipp::IwiImage iwInterRoi = iwInter.GetRoiImage(borderRoi); |
|
::ipp::iwiCopy(iwDst.GetRoiImage(borderRoi), iwInterRoi); |
|
} |
|
if(iwBorderSize2.right) |
|
{ |
|
::ipp::IwiRoi borderRoi(iwDst.m_size.width, 0, iwBorderSize2.left, iwDst.m_size.height); |
|
::ipp::IwiImage iwInterRoi = iwInter.GetRoiImage(borderRoi); |
|
::ipp::iwiCopy(iwDst.GetRoiImage(borderRoi), iwInterRoi); |
|
} |
|
} |
|
|
|
iwBorderType2.SetType(iwBorderType); |
|
for(int i = 0; i < iterations-1; i++) |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterMorphology, *pSwap[i&0x1], *pSwap[(i+1)&0x1], morphType, iwMask, ::ipp::IwDefault(), iwBorderType2); |
|
if(iterations&0x1) |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiCopy, iwInter, iwDst); |
|
} |
|
else |
|
{ |
|
if(src_data == dst_data) |
|
{ |
|
iwInter.Alloc(initSize, type, channels); |
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterMorphology, iwSrc, iwInter, morphType, iwMask, ::ipp::IwDefault(), iwBorderType); |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiCopy, iwInter, iwDst); |
|
} |
|
else |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterMorphology, iwSrc, iwDst, morphType, iwMask, ::ipp::IwDefault(), iwBorderType); |
|
} |
|
} |
|
catch(const ::ipp::IwException &) |
|
{ |
|
return false; |
|
} |
|
|
|
return true; |
|
#else |
|
CV_UNUSED(op); CV_UNUSED(src_type); CV_UNUSED(dst_type); CV_UNUSED(src_data); CV_UNUSED(src_step); CV_UNUSED(dst_data); |
|
CV_UNUSED(dst_step); CV_UNUSED(width); CV_UNUSED(height); CV_UNUSED(roi_width); CV_UNUSED(roi_height); |
|
CV_UNUSED(roi_x); CV_UNUSED(roi_y); CV_UNUSED(roi_width2); CV_UNUSED(roi_height2); CV_UNUSED(roi_x2); CV_UNUSED(roi_y2); |
|
CV_UNUSED(kernel_type); CV_UNUSED(kernel_data); CV_UNUSED(kernel_step); CV_UNUSED(kernel_width); CV_UNUSED(kernel_height); |
|
CV_UNUSED(anchor_x); CV_UNUSED(anchor_y); CV_UNUSED(borderType); CV_UNUSED(borderValue); CV_UNUSED(iterations); |
|
CV_UNUSED(isSubmatrix); |
|
return false; |
|
#endif |
|
}; |
|
|
|
#endif // HAVE_IPP |
|
|
|
// ===== 3. Fallback implementation |
|
|
|
static void ocvMorph(int op, int src_type, int dst_type, |
|
uchar * src_data, size_t src_step, |
|
uchar * dst_data, size_t dst_step, |
|
int width, int height, |
|
int roi_width, int roi_height, int roi_x, int roi_y, |
|
int roi_width2, int roi_height2, int roi_x2, int roi_y2, |
|
int kernel_type, uchar * kernel_data, size_t kernel_step, |
|
int kernel_width, int kernel_height, int anchor_x, int anchor_y, |
|
int borderType, const double borderValue[4], int iterations) |
|
{ |
|
Mat kernel(Size(kernel_width, kernel_height), kernel_type, kernel_data, kernel_step); |
|
Point anchor(anchor_x, anchor_y); |
|
Vec<double, 4> borderVal(borderValue); |
|
Ptr<FilterEngine> f = createMorphologyFilter(op, src_type, kernel, anchor, borderType, borderType, borderVal); |
|
Mat src(Size(width, height), src_type, src_data, src_step); |
|
Mat dst(Size(width, height), dst_type, dst_data, dst_step); |
|
{ |
|
Point ofs(roi_x, roi_y); |
|
Size wsz(roi_width, roi_height); |
|
f->apply( src, dst, wsz, ofs ); |
|
} |
|
{ |
|
Point ofs(roi_x2, roi_y2); |
|
Size wsz(roi_width2, roi_height2); |
|
for( int i = 1; i < iterations; i++ ) |
|
f->apply( dst, dst, wsz, ofs ); |
|
} |
|
} |
|
|
|
|
|
// ===== HAL interface implementation |
|
|
|
namespace hal { |
|
|
|
|
|
CV_DEPRECATED Ptr<Morph> Morph::create(int , int , int , int , int , |
|
int , uchar * , size_t , |
|
int , int , |
|
int , int , |
|
int , const double *, |
|
int , bool , bool ) { return Ptr<hal::Morph>(); } |
|
|
|
|
|
void morph(int op, int src_type, int dst_type, |
|
uchar * src_data, size_t src_step, |
|
uchar * dst_data, size_t dst_step, |
|
int width, int height, |
|
int roi_width, int roi_height, int roi_x, int roi_y, |
|
int roi_width2, int roi_height2, int roi_x2, int roi_y2, |
|
int kernel_type, uchar * kernel_data, size_t kernel_step, |
|
int kernel_width, int kernel_height, int anchor_x, int anchor_y, |
|
int borderType, const double borderValue[4], int iterations, bool isSubmatrix) |
|
{ |
|
{ |
|
bool res = halMorph(op, src_type, dst_type, src_data, src_step, dst_data, dst_step, width, height, |
|
roi_width, roi_height, roi_x, roi_y, |
|
roi_width2, roi_height2, roi_x2, roi_y2, |
|
kernel_type, kernel_data, kernel_step, |
|
kernel_width, kernel_height, anchor_x, anchor_y, |
|
borderType, borderValue, iterations, isSubmatrix); |
|
if (res) |
|
return; |
|
} |
|
|
|
CV_IPP_RUN_FAST(ippMorph(op, src_type, dst_type, src_data, src_step, dst_data, dst_step, width, height, |
|
roi_width, roi_height, roi_x, roi_y, |
|
roi_width2, roi_height2, roi_x2, roi_y2, |
|
kernel_type, kernel_data, kernel_step, |
|
kernel_width, kernel_height, anchor_x, anchor_y, |
|
borderType, borderValue, iterations, isSubmatrix)); |
|
|
|
ocvMorph(op, src_type, dst_type, src_data, src_step, dst_data, dst_step, width, height, |
|
roi_width, roi_height, roi_x, roi_y, |
|
roi_width2, roi_height2, roi_x2, roi_y2, |
|
kernel_type, kernel_data, kernel_step, |
|
kernel_width, kernel_height, anchor_x, anchor_y, |
|
borderType, borderValue, iterations); |
|
} |
|
|
|
} // cv::hal |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
#define ROUNDUP(sz, n) ((sz) + (n) - 1 - (((sz) + (n) - 1) % (n))) |
|
|
|
static bool ocl_morph3x3_8UC1( InputArray _src, OutputArray _dst, InputArray _kernel, Point anchor, |
|
int op, int actual_op = -1, InputArray _extraMat = noArray()) |
|
{ |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
Size ksize = _kernel.size(); |
|
|
|
Mat kernel8u; |
|
String processing; |
|
|
|
bool haveExtraMat = !_extraMat.empty(); |
|
CV_Assert(actual_op <= 3 || haveExtraMat); |
|
|
|
_kernel.getMat().convertTo(kernel8u, CV_8U); |
|
for (int y = 0; y < kernel8u.rows; ++y) |
|
for (int x = 0; x < kernel8u.cols; ++x) |
|
if (kernel8u.at<uchar>(y, x) != 0) |
|
processing += format("PROCESS(%d,%d)", y, x); |
|
|
|
if (anchor.x < 0) |
|
anchor.x = ksize.width / 2; |
|
if (anchor.y < 0) |
|
anchor.y = ksize.height / 2; |
|
|
|
if (actual_op < 0) |
|
actual_op = op; |
|
|
|
if (type != CV_8UC1 || |
|
!((_src.offset() == 0) && (_src.step() % 4 == 0)) || |
|
!((_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)) || |
|
!(anchor.x == 1 && anchor.y == 1) || |
|
!(ksize.width == 3 && ksize.height == 3)) |
|
return false; |
|
|
|
Size size = _src.size(); |
|
size_t globalsize[2] = { 0, 0 }; |
|
size_t localsize[2] = { 0, 0 }; |
|
|
|
globalsize[0] = size.width / 16; |
|
globalsize[1] = size.height / 2; |
|
|
|
static const char * const op2str[] = { "OP_ERODE", "OP_DILATE", NULL, NULL, "OP_GRADIENT", "OP_TOPHAT", "OP_BLACKHAT" }; |
|
String opts = format("-D PROCESS_ELEM_=%s -D %s%s", processing.c_str(), op2str[op], |
|
actual_op == op ? "" : cv::format(" -D %s", op2str[actual_op]).c_str()); |
|
|
|
ocl::Kernel k; |
|
k.create("morph3x3_8UC1_cols16_rows2", cv::ocl::imgproc::morph3x3_oclsrc, opts); |
|
|
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(size, CV_MAKETYPE(depth, cn)); |
|
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) |
|
return false; |
|
UMat dst = _dst.getUMat(); |
|
UMat extraMat = _extraMat.getUMat(); |
|
|
|
int idxArg = k.set(0, ocl::KernelArg::PtrReadOnly(src)); |
|
idxArg = k.set(idxArg, (int)src.step); |
|
idxArg = k.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); |
|
idxArg = k.set(idxArg, (int)dst.step); |
|
idxArg = k.set(idxArg, (int)dst.rows); |
|
idxArg = k.set(idxArg, (int)dst.cols); |
|
|
|
if (haveExtraMat) |
|
{ |
|
idxArg = k.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(extraMat)); |
|
} |
|
|
|
return k.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); |
|
} |
|
|
|
static bool ocl_morphSmall( InputArray _src, OutputArray _dst, InputArray _kernel, Point anchor, int borderType, |
|
int op, int actual_op = -1, InputArray _extraMat = noArray()) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), esz = CV_ELEM_SIZE(type); |
|
bool doubleSupport = dev.doubleFPConfig() > 0; |
|
|
|
if (cn > 4 || (!doubleSupport && depth == CV_64F) || |
|
_src.offset() % esz != 0 || _src.step() % esz != 0) |
|
return false; |
|
|
|
bool haveExtraMat = !_extraMat.empty(); |
|
CV_Assert(actual_op <= 3 || haveExtraMat); |
|
|
|
Size ksize = _kernel.size(); |
|
if (anchor.x < 0) |
|
anchor.x = ksize.width / 2; |
|
if (anchor.y < 0) |
|
anchor.y = ksize.height / 2; |
|
|
|
Size size = _src.size(), wholeSize; |
|
bool isolated = (borderType & BORDER_ISOLATED) != 0; |
|
borderType &= ~BORDER_ISOLATED; |
|
int wdepth = depth, wtype = type; |
|
if (depth == CV_8U) |
|
{ |
|
wdepth = CV_32S; |
|
wtype = CV_MAKETYPE(wdepth, cn); |
|
} |
|
char cvt[2][40]; |
|
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", |
|
"BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; |
|
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }; |
|
|
|
UMat src = _src.getUMat(); |
|
if (!isolated) |
|
{ |
|
Point ofs; |
|
src.locateROI(wholeSize, ofs); |
|
} |
|
|
|
int h = isolated ? size.height : wholeSize.height; |
|
int w = isolated ? size.width : wholeSize.width; |
|
if (w < ksize.width || h < ksize.height) |
|
return false; |
|
|
|
// Figure out what vector size to use for loading the pixels. |
|
int pxLoadNumPixels = cn != 1 || size.width % 4 ? 1 : 4; |
|
int pxLoadVecSize = cn * pxLoadNumPixels; |
|
|
|
// Figure out how many pixels per work item to compute in X and Y |
|
// directions. Too many and we run out of registers. |
|
int pxPerWorkItemX = 1, pxPerWorkItemY = 1; |
|
if (cn <= 2 && ksize.width <= 4 && ksize.height <= 4) |
|
{ |
|
pxPerWorkItemX = size.width % 8 ? size.width % 4 ? size.width % 2 ? 1 : 2 : 4 : 8; |
|
pxPerWorkItemY = size.height % 2 ? 1 : 2; |
|
} |
|
else if (cn < 4 || (ksize.width <= 4 && ksize.height <= 4)) |
|
{ |
|
pxPerWorkItemX = size.width % 2 ? 1 : 2; |
|
pxPerWorkItemY = size.height % 2 ? 1 : 2; |
|
} |
|
globalsize[0] = size.width / pxPerWorkItemX; |
|
globalsize[1] = size.height / pxPerWorkItemY; |
|
|
|
// Need some padding in the private array for pixels |
|
int privDataWidth = ROUNDUP(pxPerWorkItemX + ksize.width - 1, pxLoadNumPixels); |
|
|
|
// Make the global size a nice round number so the runtime can pick |
|
// from reasonable choices for the workgroup size |
|
const int wgRound = 256; |
|
globalsize[0] = ROUNDUP(globalsize[0], wgRound); |
|
|
|
if (actual_op < 0) |
|
actual_op = op; |
|
|
|
// build processing |
|
String processing; |
|
Mat kernel8u; |
|
_kernel.getMat().convertTo(kernel8u, CV_8U); |
|
for (int y = 0; y < kernel8u.rows; ++y) |
|
for (int x = 0; x < kernel8u.cols; ++x) |
|
if (kernel8u.at<uchar>(y, x) != 0) |
|
processing += format("PROCESS(%d,%d)", y, x); |
|
|
|
|
|
static const char * const op2str[] = { "OP_ERODE", "OP_DILATE", NULL, NULL, "OP_GRADIENT", "OP_TOPHAT", "OP_BLACKHAT" }; |
|
String opts = format("-D cn=%d " |
|
"-D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d " |
|
"-D PX_LOAD_VEC_SIZE=%d -D PX_LOAD_NUM_PX=%d -D DEPTH_%d " |
|
"-D PX_PER_WI_X=%d -D PX_PER_WI_Y=%d -D PRIV_DATA_WIDTH=%d -D %s -D %s " |
|
"-D PX_LOAD_X_ITERATIONS=%d -D PX_LOAD_Y_ITERATIONS=%d " |
|
"-D srcT=%s -D srcT1=%s -D dstT=srcT -D dstT1=srcT1 -D WT=%s -D WT1=%s " |
|
"-D convertToWT=%s -D convertToDstT=%s -D PX_LOAD_FLOAT_VEC_CONV=convert_%s -D PROCESS_ELEM_=%s -D %s%s", |
|
cn, anchor.x, anchor.y, ksize.width, ksize.height, |
|
pxLoadVecSize, pxLoadNumPixels, depth, |
|
pxPerWorkItemX, pxPerWorkItemY, privDataWidth, borderMap[borderType], |
|
isolated ? "BORDER_ISOLATED" : "NO_BORDER_ISOLATED", |
|
privDataWidth / pxLoadNumPixels, pxPerWorkItemY + ksize.height - 1, |
|
ocl::typeToStr(type), ocl::typeToStr(depth), |
|
haveExtraMat ? ocl::typeToStr(wtype):"srcT",//to prevent overflow - WT |
|
haveExtraMat ? ocl::typeToStr(wdepth):"srcT1",//to prevent overflow - WT1 |
|
haveExtraMat ? ocl::convertTypeStr(depth, wdepth, cn, cvt[0]) : "noconvert",//to prevent overflow - src to WT |
|
haveExtraMat ? ocl::convertTypeStr(wdepth, depth, cn, cvt[1]) : "noconvert",//to prevent overflow - WT to dst |
|
ocl::typeToStr(CV_MAKE_TYPE(haveExtraMat ? wdepth : depth, pxLoadVecSize)), //PX_LOAD_FLOAT_VEC_CONV |
|
processing.c_str(), op2str[op], |
|
actual_op == op ? "" : cv::format(" -D %s", op2str[actual_op]).c_str()); |
|
|
|
ocl::Kernel kernel("filterSmall", cv::ocl::imgproc::filterSmall_oclsrc, opts); |
|
if (kernel.empty()) |
|
return false; |
|
|
|
_dst.create(size, type); |
|
UMat dst = _dst.getUMat(); |
|
|
|
UMat source; |
|
if(src.u != dst.u) |
|
source = src; |
|
else |
|
{ |
|
Point ofs; |
|
int cols = src.cols, rows = src.rows; |
|
src.locateROI(wholeSize, ofs); |
|
src.adjustROI(ofs.y, wholeSize.height - rows - ofs.y, ofs.x, wholeSize.width - cols - ofs.x); |
|
src.copyTo(source); |
|
|
|
src.adjustROI(-ofs.y, -wholeSize.height + rows + ofs.y, -ofs.x, -wholeSize.width + cols + ofs.x); |
|
source.adjustROI(-ofs.y, -wholeSize.height + rows + ofs.y, -ofs.x, -wholeSize.width + cols + ofs.x); |
|
source.locateROI(wholeSize, ofs); |
|
} |
|
|
|
UMat extraMat = _extraMat.getUMat(); |
|
|
|
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(source)); |
|
idxArg = kernel.set(idxArg, (int)source.step); |
|
int srcOffsetX = (int)((source.offset % source.step) / source.elemSize()); |
|
int srcOffsetY = (int)(source.offset / source.step); |
|
int srcEndX = isolated ? srcOffsetX + size.width : wholeSize.width; |
|
int srcEndY = isolated ? srcOffsetY + size.height : wholeSize.height; |
|
idxArg = kernel.set(idxArg, srcOffsetX); |
|
idxArg = kernel.set(idxArg, srcOffsetY); |
|
idxArg = kernel.set(idxArg, srcEndX); |
|
idxArg = kernel.set(idxArg, srcEndY); |
|
idxArg = kernel.set(idxArg, ocl::KernelArg::WriteOnly(dst)); |
|
|
|
if (haveExtraMat) |
|
{ |
|
idxArg = kernel.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(extraMat)); |
|
} |
|
|
|
return kernel.run(2, globalsize, NULL, false); |
|
} |
|
|
|
static bool ocl_morphOp(InputArray _src, OutputArray _dst, InputArray _kernel, |
|
Point anchor, int iterations, int op, int borderType, |
|
const Scalar &, int actual_op = -1, InputArray _extraMat = noArray()) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
Mat kernel = _kernel.getMat(); |
|
Size ksize = !kernel.empty() ? kernel.size() : Size(3, 3), ssize = _src.size(); |
|
|
|
bool doubleSupport = dev.doubleFPConfig() > 0; |
|
if ((depth == CV_64F && !doubleSupport) || borderType != BORDER_CONSTANT) |
|
return false; |
|
|
|
bool haveExtraMat = !_extraMat.empty(); |
|
CV_Assert(actual_op <= 3 || haveExtraMat); |
|
|
|
if (kernel.empty()) |
|
{ |
|
ksize = Size(1+iterations*2,1+iterations*2); |
|
kernel = getStructuringElement(MORPH_RECT, ksize); |
|
anchor = Point(iterations, iterations); |
|
iterations = 1; |
|
CV_DbgAssert(ksize == kernel.size()); |
|
} |
|
else if( iterations > 1 && countNonZero(kernel) == kernel.rows*kernel.cols ) |
|
{ |
|
ksize = Size(ksize.width + (iterations-1)*(ksize.width-1), |
|
ksize.height + (iterations-1)*(ksize.height-1)); |
|
anchor = Point(anchor.x*iterations, anchor.y*iterations); |
|
kernel = getStructuringElement(MORPH_RECT, ksize, anchor); |
|
iterations = 1; |
|
CV_DbgAssert(ksize == kernel.size()); |
|
} |
|
|
|
static bool param_use_morph_special_kernels = utils::getConfigurationParameterBool("OPENCV_OPENCL_IMGPROC_MORPH_SPECIAL_KERNEL", |
|
#ifndef __APPLE__ |
|
true |
|
#else |
|
false |
|
#endif |
|
); |
|
|
|
int esz = CV_ELEM_SIZE(type); |
|
// try to use OpenCL kernel adopted for small morph kernel |
|
if (param_use_morph_special_kernels && dev.isIntel() && |
|
((ksize.width < 5 && ksize.height < 5 && esz <= 4) || |
|
(ksize.width == 5 && ksize.height == 5 && cn == 1)) && |
|
(iterations == 1) |
|
) |
|
{ |
|
if (ocl_morph3x3_8UC1(_src, _dst, kernel, anchor, op, actual_op, _extraMat)) |
|
return true; |
|
|
|
if (ocl_morphSmall(_src, _dst, kernel, anchor, borderType, op, actual_op, _extraMat)) |
|
return true; |
|
} |
|
|
|
if (iterations == 0 || kernel.rows*kernel.cols == 1) |
|
{ |
|
_src.copyTo(_dst); |
|
return true; |
|
} |
|
|
|
#ifdef __ANDROID__ |
|
size_t localThreads[2] = { 16, 8 }; |
|
#else |
|
size_t localThreads[2] = { 16, 16 }; |
|
#endif |
|
size_t globalThreads[2] = { (size_t)ssize.width, (size_t)ssize.height }; |
|
|
|
#ifdef __APPLE__ |
|
if( actual_op != MORPH_ERODE && actual_op != MORPH_DILATE ) |
|
localThreads[0] = localThreads[1] = 4; |
|
#endif |
|
|
|
if (localThreads[0]*localThreads[1] * 2 < (localThreads[0] + ksize.width - 1) * (localThreads[1] + ksize.height - 1)) |
|
return false; |
|
|
|
#ifdef __ANDROID__ |
|
if (dev.isNVidia()) |
|
return false; |
|
#endif |
|
|
|
// build processing |
|
String processing; |
|
Mat kernel8u; |
|
kernel.convertTo(kernel8u, CV_8U); |
|
for (int y = 0; y < kernel8u.rows; ++y) |
|
for (int x = 0; x < kernel8u.cols; ++x) |
|
if (kernel8u.at<uchar>(y, x) != 0) |
|
processing += format("PROCESS(%d,%d)", y, x); |
|
|
|
static const char * const op2str[] = { "OP_ERODE", "OP_DILATE", NULL, NULL, "OP_GRADIENT", "OP_TOPHAT", "OP_BLACKHAT" }; |
|
|
|
char cvt[2][50]; |
|
int wdepth = std::max(depth, CV_32F), scalarcn = cn == 3 ? 4 : cn; |
|
|
|
if (actual_op < 0) |
|
actual_op = op; |
|
|
|
std::vector<ocl::Kernel> kernels(iterations); |
|
for (int i = 0; i < iterations; i++) |
|
{ |
|
int current_op = iterations == i + 1 ? actual_op : op; |
|
String buildOptions = format("-D RADIUSX=%d -D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D %s%s" |
|
" -D PROCESS_ELEMS=%s -D T=%s -D DEPTH_%d -D cn=%d -D T1=%s" |
|
" -D convertToWT=%s -D convertToT=%s -D ST=%s%s", |
|
anchor.x, anchor.y, (int)localThreads[0], (int)localThreads[1], op2str[op], |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", processing.c_str(), |
|
ocl::typeToStr(type), depth, cn, ocl::typeToStr(depth), |
|
ocl::convertTypeStr(depth, wdepth, cn, cvt[0]), |
|
ocl::convertTypeStr(wdepth, depth, cn, cvt[1]), |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, scalarcn)), |
|
current_op == op ? "" : cv::format(" -D %s", op2str[current_op]).c_str()); |
|
|
|
kernels[i].create("morph", ocl::imgproc::morph_oclsrc, buildOptions); |
|
if (kernels[i].empty()) |
|
return false; |
|
} |
|
|
|
UMat src = _src.getUMat(), extraMat = _extraMat.getUMat(); |
|
_dst.create(src.size(), src.type()); |
|
UMat dst = _dst.getUMat(); |
|
|
|
if (iterations == 1 && src.u != dst.u) |
|
{ |
|
Size wholesize; |
|
Point ofs; |
|
src.locateROI(wholesize, ofs); |
|
int wholecols = wholesize.width, wholerows = wholesize.height; |
|
|
|
if (haveExtraMat) |
|
kernels[0].args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), |
|
ofs.x, ofs.y, src.cols, src.rows, wholecols, wholerows, |
|
ocl::KernelArg::ReadOnlyNoSize(extraMat)); |
|
else |
|
kernels[0].args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), |
|
ofs.x, ofs.y, src.cols, src.rows, wholecols, wholerows); |
|
|
|
return kernels[0].run(2, globalThreads, localThreads, false); |
|
} |
|
|
|
for (int i = 0; i < iterations; i++) |
|
{ |
|
UMat source; |
|
Size wholesize; |
|
Point ofs; |
|
|
|
if (i == 0) |
|
{ |
|
int cols = src.cols, rows = src.rows; |
|
src.locateROI(wholesize, ofs); |
|
src.adjustROI(ofs.y, wholesize.height - rows - ofs.y, ofs.x, wholesize.width - cols - ofs.x); |
|
if(src.u != dst.u) |
|
source = src; |
|
else |
|
src.copyTo(source); |
|
|
|
src.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); |
|
source.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); |
|
} |
|
else |
|
{ |
|
int cols = dst.cols, rows = dst.rows; |
|
dst.locateROI(wholesize, ofs); |
|
dst.adjustROI(ofs.y, wholesize.height - rows - ofs.y, ofs.x, wholesize.width - cols - ofs.x); |
|
dst.copyTo(source); |
|
dst.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); |
|
source.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); |
|
} |
|
source.locateROI(wholesize, ofs); |
|
|
|
if (haveExtraMat && iterations == i + 1) |
|
kernels[i].args(ocl::KernelArg::ReadOnlyNoSize(source), ocl::KernelArg::WriteOnlyNoSize(dst), |
|
ofs.x, ofs.y, source.cols, source.rows, wholesize.width, wholesize.height, |
|
ocl::KernelArg::ReadOnlyNoSize(extraMat)); |
|
else |
|
kernels[i].args(ocl::KernelArg::ReadOnlyNoSize(source), ocl::KernelArg::WriteOnlyNoSize(dst), |
|
ofs.x, ofs.y, source.cols, source.rows, wholesize.width, wholesize.height); |
|
|
|
if (!kernels[i].run(2, globalThreads, localThreads, false)) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
static void morphOp( int op, InputArray _src, OutputArray _dst, |
|
InputArray _kernel, |
|
Point anchor, int iterations, |
|
int borderType, const Scalar& borderValue ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat kernel = _kernel.getMat(); |
|
Size ksize = !kernel.empty() ? kernel.size() : Size(3,3); |
|
anchor = normalizeAnchor(anchor, ksize); |
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && _src.channels() <= 4 && |
|
borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue() && |
|
(op == MORPH_ERODE || op == MORPH_DILATE) && |
|
anchor.x == ksize.width >> 1 && anchor.y == ksize.height >> 1, |
|
ocl_morphOp(_src, _dst, kernel, anchor, iterations, op, borderType, borderValue) ) |
|
|
|
if (iterations == 0 || kernel.rows*kernel.cols == 1) |
|
{ |
|
_src.copyTo(_dst); |
|
return; |
|
} |
|
|
|
if (kernel.empty()) |
|
{ |
|
kernel = getStructuringElement(MORPH_RECT, Size(1+iterations*2,1+iterations*2)); |
|
anchor = Point(iterations, iterations); |
|
iterations = 1; |
|
} |
|
else if( iterations > 1 && countNonZero(kernel) == kernel.rows*kernel.cols ) |
|
{ |
|
anchor = Point(anchor.x*iterations, anchor.y*iterations); |
|
kernel = getStructuringElement(MORPH_RECT, |
|
Size(ksize.width + (iterations-1)*(ksize.width-1), |
|
ksize.height + (iterations-1)*(ksize.height-1)), |
|
anchor); |
|
iterations = 1; |
|
} |
|
|
|
Mat src = _src.getMat(); |
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
Point s_ofs; |
|
Size s_wsz(src.cols, src.rows); |
|
Point d_ofs; |
|
Size d_wsz(dst.cols, dst.rows); |
|
bool isolated = (borderType&BORDER_ISOLATED)?true:false; |
|
borderType = (borderType&~BORDER_ISOLATED); |
|
|
|
if(!isolated) |
|
{ |
|
src.locateROI(s_wsz, s_ofs); |
|
dst.locateROI(d_wsz, d_ofs); |
|
} |
|
|
|
hal::morph(op, src.type(), dst.type(), |
|
src.data, src.step, |
|
dst.data, dst.step, |
|
src.cols, src.rows, |
|
s_wsz.width, s_wsz.height, s_ofs.x, s_ofs.y, |
|
d_wsz.width, d_wsz.height, d_ofs.x, d_ofs.y, |
|
kernel.type(), kernel.data, kernel.step, kernel.cols, kernel.rows, anchor.x, anchor.y, |
|
borderType, borderValue.val, iterations, |
|
(src.isSubmatrix() && !isolated)); |
|
} |
|
|
|
void erode( InputArray src, OutputArray dst, InputArray kernel, |
|
Point anchor, int iterations, |
|
int borderType, const Scalar& borderValue ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
morphOp( MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
} |
|
|
|
|
|
void dilate( InputArray src, OutputArray dst, InputArray kernel, |
|
Point anchor, int iterations, |
|
int borderType, const Scalar& borderValue ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
morphOp( MORPH_DILATE, src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_morphologyEx(InputArray _src, OutputArray _dst, int op, |
|
InputArray kernel, Point anchor, int iterations, |
|
int borderType, const Scalar& borderValue) |
|
{ |
|
_dst.createSameSize(_src, _src.type()); |
|
bool submat = _dst.isSubmatrix(); |
|
UMat temp; |
|
_OutputArray _temp = submat ? _dst : _OutputArray(temp); |
|
|
|
switch( op ) |
|
{ |
|
case MORPH_ERODE: |
|
if (!ocl_morphOp( _src, _dst, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue )) |
|
return false; |
|
break; |
|
case MORPH_DILATE: |
|
if (!ocl_morphOp( _src, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue )) |
|
return false; |
|
break; |
|
case MORPH_OPEN: |
|
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue )) |
|
return false; |
|
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue )) |
|
return false; |
|
break; |
|
case MORPH_CLOSE: |
|
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue )) |
|
return false; |
|
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue )) |
|
return false; |
|
break; |
|
case MORPH_GRADIENT: |
|
if (!ocl_morphOp( _src, temp, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue )) |
|
return false; |
|
if (!ocl_morphOp( _src, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue, MORPH_GRADIENT, temp )) |
|
return false; |
|
break; |
|
case MORPH_TOPHAT: |
|
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue )) |
|
return false; |
|
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue, MORPH_TOPHAT, _src )) |
|
return false; |
|
break; |
|
case MORPH_BLACKHAT: |
|
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue )) |
|
return false; |
|
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue, MORPH_BLACKHAT, _src )) |
|
return false; |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "unknown morphological operation" ); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
#define IPP_DISABLE_MORPH_ADV 1 |
|
#ifdef HAVE_IPP |
|
#if !IPP_DISABLE_MORPH_ADV |
|
static bool ipp_morphologyEx(int op, InputArray _src, OutputArray _dst, |
|
InputArray _kernel, |
|
Point anchor, int iterations, |
|
int borderType, const Scalar& borderValue) |
|
{ |
|
#if defined HAVE_IPP_IW |
|
Mat kernel = _kernel.getMat(); |
|
Size ksize = !kernel.empty() ? kernel.size() : Size(3,3); |
|
anchor = normalizeAnchor(anchor, ksize); |
|
|
|
if (iterations == 0 || kernel.rows*kernel.cols == 1) |
|
{ |
|
_src.copyTo(_dst); |
|
return true; |
|
} |
|
|
|
if (kernel.empty()) |
|
{ |
|
kernel = getStructuringElement(MORPH_RECT, Size(1+iterations*2,1+iterations*2)); |
|
anchor = Point(iterations, iterations); |
|
iterations = 1; |
|
} |
|
else if( iterations > 1 && countNonZero(kernel) == kernel.rows*kernel.cols ) |
|
{ |
|
anchor = Point(anchor.x*iterations, anchor.y*iterations); |
|
kernel = getStructuringElement(MORPH_RECT, |
|
Size(ksize.width + (iterations-1)*(ksize.width-1), |
|
ksize.height + (iterations-1)*(ksize.height-1)), |
|
anchor); |
|
iterations = 1; |
|
} |
|
|
|
Mat src = _src.getMat(); |
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
Point s_ofs; |
|
Size s_wsz(src.cols, src.rows); |
|
Point d_ofs; |
|
Size d_wsz(dst.cols, dst.rows); |
|
bool isolated = (borderType&BORDER_ISOLATED)?true:false; |
|
borderType = (borderType&~BORDER_ISOLATED); |
|
|
|
if(!isolated) |
|
{ |
|
src.locateROI(s_wsz, s_ofs); |
|
dst.locateROI(d_wsz, d_ofs); |
|
} |
|
|
|
return ippMorph(op, src.type(), dst.type(), |
|
src.data, src.step, |
|
dst.data, dst.step, |
|
src.cols, src.rows, |
|
s_wsz.width, s_wsz.height, s_ofs.x, s_ofs.y, |
|
d_wsz.width, d_wsz.height, d_ofs.x, d_ofs.y, |
|
kernel.type(), kernel.data, kernel.step, kernel.cols, kernel.rows, anchor.x, anchor.y, |
|
borderType, borderValue.val, iterations, |
|
(src.isSubmatrix() && !isolated)); |
|
#else |
|
CV_UNUSED(op); CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(_kernel); CV_UNUSED(anchor); |
|
CV_UNUSED(iterations); CV_UNUSED(borderType); CV_UNUSED(borderValue); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
#endif |
|
|
|
void morphologyEx( InputArray _src, OutputArray _dst, int op, |
|
InputArray _kernel, Point anchor, int iterations, |
|
int borderType, const Scalar& borderValue ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat kernel = _kernel.getMat(); |
|
if (kernel.empty()) |
|
{ |
|
kernel = getStructuringElement(MORPH_RECT, Size(3,3), Point(1,1)); |
|
} |
|
#ifdef HAVE_OPENCL |
|
Size ksize = kernel.size(); |
|
anchor = normalizeAnchor(anchor, ksize); |
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && _src.channels() <= 4 && |
|
anchor.x == ksize.width >> 1 && anchor.y == ksize.height >> 1 && |
|
borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue(), |
|
ocl_morphologyEx(_src, _dst, op, kernel, anchor, iterations, borderType, borderValue)) |
|
#endif |
|
|
|
Mat src = _src.getMat(), temp; |
|
_dst.create(src.size(), src.type()); |
|
Mat dst = _dst.getMat(); |
|
|
|
#if !IPP_DISABLE_MORPH_ADV |
|
CV_IPP_RUN_FAST(ipp_morphologyEx(op, src, dst, kernel, anchor, iterations, borderType, borderValue)); |
|
#endif |
|
|
|
switch( op ) |
|
{ |
|
case MORPH_ERODE: |
|
erode( src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
break; |
|
case MORPH_DILATE: |
|
dilate( src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
break; |
|
case MORPH_OPEN: |
|
erode( src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
dilate( dst, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
break; |
|
case MORPH_CLOSE: |
|
dilate( src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
erode( dst, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
break; |
|
case MORPH_GRADIENT: |
|
erode( src, temp, kernel, anchor, iterations, borderType, borderValue ); |
|
dilate( src, dst, kernel, anchor, iterations, borderType, borderValue ); |
|
dst -= temp; |
|
break; |
|
case MORPH_TOPHAT: |
|
if( src.data != dst.data ) |
|
temp = dst; |
|
erode( src, temp, kernel, anchor, iterations, borderType, borderValue ); |
|
dilate( temp, temp, kernel, anchor, iterations, borderType, borderValue ); |
|
dst = src - temp; |
|
break; |
|
case MORPH_BLACKHAT: |
|
if( src.data != dst.data ) |
|
temp = dst; |
|
dilate( src, temp, kernel, anchor, iterations, borderType, borderValue ); |
|
erode( temp, temp, kernel, anchor, iterations, borderType, borderValue ); |
|
dst = temp - src; |
|
break; |
|
case MORPH_HITMISS: |
|
CV_Assert(src.type() == CV_8UC1); |
|
if(countNonZero(kernel) <=0) |
|
{ |
|
src.copyTo(dst); |
|
break; |
|
} |
|
{ |
|
Mat k1, k2, e1, e2; |
|
k1 = (kernel == 1); |
|
k2 = (kernel == -1); |
|
|
|
if (countNonZero(k1) <= 0) |
|
e1 = Mat(src.size(), src.type(), Scalar(255)); |
|
else |
|
erode(src, e1, k1, anchor, iterations, borderType, borderValue); |
|
|
|
if (countNonZero(k2) <= 0) |
|
e2 = Mat(src.size(), src.type(), Scalar(255)); |
|
else |
|
{ |
|
Mat src_complement; |
|
bitwise_not(src, src_complement); |
|
erode(src_complement, e2, k2, anchor, iterations, borderType, borderValue); |
|
} |
|
dst = e1 & e2; |
|
} |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "unknown morphological operation" ); |
|
} |
|
} |
|
|
|
} // namespace cv |
|
|
|
CV_IMPL IplConvKernel * |
|
cvCreateStructuringElementEx( int cols, int rows, |
|
int anchorX, int anchorY, |
|
int shape, int *values ) |
|
{ |
|
cv::Size ksize = cv::Size(cols, rows); |
|
cv::Point anchor = cv::Point(anchorX, anchorY); |
|
CV_Assert( cols > 0 && rows > 0 && anchor.inside(cv::Rect(0,0,cols,rows)) && |
|
(shape != CV_SHAPE_CUSTOM || values != 0)); |
|
|
|
int i, size = rows * cols; |
|
int element_size = sizeof(IplConvKernel) + size*sizeof(int); |
|
IplConvKernel *element = (IplConvKernel*)cvAlloc(element_size + 32); |
|
|
|
element->nCols = cols; |
|
element->nRows = rows; |
|
element->anchorX = anchorX; |
|
element->anchorY = anchorY; |
|
element->nShiftR = shape < CV_SHAPE_ELLIPSE ? shape : CV_SHAPE_CUSTOM; |
|
element->values = (int*)(element + 1); |
|
|
|
if( shape == CV_SHAPE_CUSTOM ) |
|
{ |
|
for( i = 0; i < size; i++ ) |
|
element->values[i] = values[i]; |
|
} |
|
else |
|
{ |
|
cv::Mat elem = cv::getStructuringElement(shape, ksize, anchor); |
|
for( i = 0; i < size; i++ ) |
|
element->values[i] = elem.ptr()[i]; |
|
} |
|
|
|
return element; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvReleaseStructuringElement( IplConvKernel ** element ) |
|
{ |
|
if( !element ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
cvFree( element ); |
|
} |
|
|
|
|
|
static void convertConvKernel( const IplConvKernel* src, cv::Mat& dst, cv::Point& anchor ) |
|
{ |
|
if(!src) |
|
{ |
|
anchor = cv::Point(1,1); |
|
dst.release(); |
|
return; |
|
} |
|
anchor = cv::Point(src->anchorX, src->anchorY); |
|
dst.create(src->nRows, src->nCols, CV_8U); |
|
|
|
int i, size = src->nRows*src->nCols; |
|
for( i = 0; i < size; i++ ) |
|
dst.ptr()[i] = (uchar)(src->values[i] != 0); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvErode( const CvArr* srcarr, CvArr* dstarr, IplConvKernel* element, int iterations ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel; |
|
CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); |
|
cv::Point anchor; |
|
convertConvKernel( element, kernel, anchor ); |
|
cv::erode( src, dst, kernel, anchor, iterations, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvDilate( const CvArr* srcarr, CvArr* dstarr, IplConvKernel* element, int iterations ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel; |
|
CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); |
|
cv::Point anchor; |
|
convertConvKernel( element, kernel, anchor ); |
|
cv::dilate( src, dst, kernel, anchor, iterations, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMorphologyEx( const void* srcarr, void* dstarr, void*, |
|
IplConvKernel* element, int op, int iterations ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel; |
|
CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); |
|
cv::Point anchor; |
|
IplConvKernel* temp_element = NULL; |
|
if (!element) |
|
{ |
|
temp_element = cvCreateStructuringElementEx(3, 3, 1, 1, CV_SHAPE_RECT); |
|
} else { |
|
temp_element = element; |
|
} |
|
convertConvKernel( temp_element, kernel, anchor ); |
|
if (!element) |
|
{ |
|
cvReleaseStructuringElement(&temp_element); |
|
} |
|
cv::morphologyEx( src, dst, op, kernel, anchor, iterations, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
/* End of file. */
|
|
|