mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
7.7 KiB
199 lines
7.7 KiB
#include <highgui.h> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
#define DRAW_RICH_KEYPOINTS_MODE 0 |
|
#define DRAW_OUTLIERS_MODE 0 |
|
|
|
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng ) |
|
{ |
|
H.create(3, 3, CV_32FC1); |
|
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f); |
|
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f); |
|
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols; |
|
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f); |
|
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f); |
|
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows; |
|
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f); |
|
|
|
warpPerspective( src, dst, H, src.size() ); |
|
} |
|
|
|
const string winName = "correspondences"; |
|
|
|
void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, |
|
vector<KeyPoint>& keypoints1, const Mat& descriptors1, |
|
Ptr<FeatureDetector>& detector, Ptr<DescriptorExtractor>& descriptorExtractor, |
|
Ptr<DescriptorMatcher>& descriptorMatcher, |
|
double ransacReprojThreshold, RNG& rng ) |
|
{ |
|
assert( !img1.empty() ); |
|
Mat H12; |
|
if( isWarpPerspective ) |
|
warpPerspectiveRand(img1, img2, H12, rng ); |
|
else |
|
assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ ); |
|
|
|
cout << endl << "< Extracting keypoints from second image..." << endl; |
|
vector<KeyPoint> keypoints2; |
|
detector->detect( img2, keypoints2 ); |
|
cout << keypoints2.size() << " points" << endl << ">" << endl; |
|
|
|
if( !H12.empty() ) |
|
{ |
|
cout << "< Evaluate feature detector..." << endl; |
|
float repeatability; |
|
int correspCount; |
|
evaluateFeatureDetector( img1, img2, H12, &keypoints1, &keypoints2, repeatability, correspCount ); |
|
cout << "repeatability = " << repeatability << endl; |
|
cout << "correspCount = " << correspCount << endl; |
|
cout << ">" << endl; |
|
} |
|
|
|
cout << "< Computing descriptors for keypoints from second image..." << endl; |
|
Mat descriptors2; |
|
descriptorExtractor->compute( img2, keypoints2, descriptors2 ); |
|
cout << ">" << endl; |
|
|
|
cout << "< Matching descriptors..." << endl; |
|
vector<DMatch> matches; |
|
descriptorMatcher->match( descriptors1, descriptors2, matches, Mat() ); |
|
cout << ">" << endl; |
|
|
|
if( !H12.empty() ) |
|
{ |
|
cout << "< Evaluate descriptor match..." << endl; |
|
vector<Point2f> curve; |
|
Ptr<GenericDescriptorMatch> gdm = new VectorDescriptorMatch( descriptorExtractor, descriptorMatcher ); |
|
evaluateGenericDescriptorMatcher( img1, img2, H12, keypoints1, keypoints2, 0, 0, curve, gdm ); |
|
for( float l_p = 0; l_p < 1 - FLT_EPSILON; l_p+=0.1 ) |
|
cout << "1-precision = " << l_p << "; recall = " << getRecall( curve, l_p ) << endl; |
|
cout << ">" << endl; |
|
} |
|
|
|
vector<int> trainIdxs( matches.size() ); |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
trainIdxs[i] = matches[i].indexTrain; |
|
|
|
if( !isWarpPerspective && ransacReprojThreshold >= 0 ) |
|
{ |
|
cout << "< Computing homography (RANSAC)..." << endl; |
|
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1); |
|
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs); |
|
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold ); |
|
cout << ">" << endl; |
|
} |
|
|
|
Mat drawImg; |
|
if( !H12.empty() ) // filter outliers |
|
{ |
|
vector<char> matchesMask( matches.size(), 0 ); |
|
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1); |
|
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs); |
|
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12); |
|
for( size_t i1 = 0; i1 < points1.size(); i1++ ) |
|
{ |
|
if( norm(points2[i1] - points1t.at<Point2f>(i1,0)) < 4 ) // inlier |
|
matchesMask[i1] = 1; |
|
} |
|
// draw inliers |
|
drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask |
|
#if DRAW_RICH_KEYPOINTS_MODE |
|
, DrawMatchesFlags::DRAW_RICH_KEYPOINTS |
|
#endif |
|
); |
|
|
|
#if DRAW_OUTLIERS_MODE |
|
// draw outliers |
|
for( size_t i1 = 0; i1 < matchesMask.size(); i1++ ) |
|
matchesMask[i1] = !matchesMask[i1]; |
|
drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 0, 255), CV_RGB(255, 0, 0), matchesMask, |
|
DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
#endif |
|
} |
|
else |
|
drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg ); |
|
|
|
imshow( winName, drawImg ); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if( argc != 4 && argc != 6 ) |
|
{ |
|
cout << "Format:" << endl; |
|
cout << "case1: second image is obtained from the first (given) image using random generated homography matrix" << endl; |
|
cout << argv[0] << " [detectorType] [descriptorType] [image1]" << endl; |
|
cout << "case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated" << endl; |
|
cout << argv[0] << " [detectorType] [descriptorType] [image1] [image2] [ransacReprojThreshold]" << endl; |
|
cout << endl << "Mathes are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)" << endl; |
|
return -1; |
|
} |
|
bool isWarpPerspective = argc == 4; |
|
double ransacReprojThreshold = -1; |
|
if( !isWarpPerspective ) |
|
ransacReprojThreshold = atof(argv[5]); |
|
|
|
cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl; |
|
Ptr<FeatureDetector> detector = createFeatureDetector( argv[1] ); |
|
Ptr<DescriptorExtractor> descriptorExtractor = createDescriptorExtractor( argv[2] ); |
|
Ptr<DescriptorMatcher> descriptorMatcher = createDescriptorMatcher( "BruteForce" ); |
|
cout << ">" << endl; |
|
if( detector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() ) |
|
{ |
|
cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl; |
|
return -1; |
|
} |
|
|
|
cout << "< Reading the images..." << endl; |
|
Mat img1 = imread( argv[3] ), img2; |
|
if( !isWarpPerspective ) |
|
img2 = imread( argv[4] ); |
|
cout << ">" << endl; |
|
if( img1.empty() || (!isWarpPerspective && img2.empty()) ) |
|
{ |
|
cout << "Can not read images" << endl; |
|
return -1; |
|
} |
|
|
|
cout << endl << "< Extracting keypoints from first image..." << endl; |
|
vector<KeyPoint> keypoints1; |
|
detector->detect( img1, keypoints1 ); |
|
cout << keypoints1.size() << " points" << endl << ">" << endl; |
|
|
|
cout << "< Computing descriptors for keypoints from first image..." << endl; |
|
Mat descriptors1; |
|
descriptorExtractor->compute( img1, keypoints1, descriptors1 ); |
|
cout << ">" << endl; |
|
|
|
namedWindow(winName, 1); |
|
RNG rng = theRNG(); |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, |
|
ransacReprojThreshold, rng ); |
|
for(;;) |
|
{ |
|
char c = (char)cvWaitKey(0); |
|
if( c == '\x1b' ) // esc |
|
{ |
|
cout << "Exiting ..." << endl; |
|
return 0; |
|
} |
|
else if( isWarpPerspective ) |
|
{ |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, |
|
ransacReprojThreshold, rng ); |
|
} |
|
} |
|
waitKey(0); |
|
return 0; |
|
}
|
|
|