mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1056 lines
38 KiB
1056 lines
38 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#include <float.h> |
|
#include <stdio.h> |
|
#include "lkpyramid.hpp" |
|
|
|
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n)) |
|
|
|
namespace |
|
{ |
|
static void calcSharrDeriv(const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
using namespace cv; |
|
using cv::detail::deriv_type; |
|
int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth(); |
|
CV_Assert(depth == CV_8U); |
|
dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2)); |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::calcSharrDeriv(src, dst)) |
|
return; |
|
#endif |
|
|
|
int x, y, delta = (int)alignSize((cols + 2)*cn, 16); |
|
AutoBuffer<deriv_type> _tempBuf(delta*2 + 64); |
|
deriv_type *trow0 = alignPtr(_tempBuf + cn, 16), *trow1 = alignPtr(trow0 + delta, 16); |
|
|
|
#if CV_SSE2 |
|
__m128i z = _mm_setzero_si128(), c3 = _mm_set1_epi16(3), c10 = _mm_set1_epi16(10); |
|
#endif |
|
|
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
const uchar* srow0 = src.ptr<uchar>(y > 0 ? y-1 : rows > 1 ? 1 : 0); |
|
const uchar* srow1 = src.ptr<uchar>(y); |
|
const uchar* srow2 = src.ptr<uchar>(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0); |
|
deriv_type* drow = dst.ptr<deriv_type>(y); |
|
|
|
// do vertical convolution |
|
x = 0; |
|
#if CV_SSE2 |
|
for( ; x <= colsn - 8; x += 8 ) |
|
{ |
|
__m128i s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow0 + x)), z); |
|
__m128i s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow1 + x)), z); |
|
__m128i s2 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow2 + x)), z); |
|
__m128i t0 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s0, s2), c3), _mm_mullo_epi16(s1, c10)); |
|
__m128i t1 = _mm_sub_epi16(s2, s0); |
|
_mm_store_si128((__m128i*)(trow0 + x), t0); |
|
_mm_store_si128((__m128i*)(trow1 + x), t1); |
|
} |
|
#endif |
|
for( ; x < colsn; x++ ) |
|
{ |
|
int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10; |
|
int t1 = srow2[x] - srow0[x]; |
|
trow0[x] = (deriv_type)t0; |
|
trow1[x] = (deriv_type)t1; |
|
} |
|
|
|
// make border |
|
int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn; |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k]; |
|
trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k]; |
|
} |
|
|
|
// do horizontal convolution, interleave the results and store them to dst |
|
x = 0; |
|
#if CV_SSE2 |
|
for( ; x <= colsn - 8; x += 8 ) |
|
{ |
|
__m128i s0 = _mm_loadu_si128((const __m128i*)(trow0 + x - cn)); |
|
__m128i s1 = _mm_loadu_si128((const __m128i*)(trow0 + x + cn)); |
|
__m128i s2 = _mm_loadu_si128((const __m128i*)(trow1 + x - cn)); |
|
__m128i s3 = _mm_load_si128((const __m128i*)(trow1 + x)); |
|
__m128i s4 = _mm_loadu_si128((const __m128i*)(trow1 + x + cn)); |
|
|
|
__m128i t0 = _mm_sub_epi16(s1, s0); |
|
__m128i t1 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s2, s4), c3), _mm_mullo_epi16(s3, c10)); |
|
__m128i t2 = _mm_unpacklo_epi16(t0, t1); |
|
t0 = _mm_unpackhi_epi16(t0, t1); |
|
// this can probably be replaced with aligned stores if we aligned dst properly. |
|
_mm_storeu_si128((__m128i*)(drow + x*2), t2); |
|
_mm_storeu_si128((__m128i*)(drow + x*2 + 8), t0); |
|
} |
|
#endif |
|
for( ; x < colsn; x++ ) |
|
{ |
|
deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]); |
|
deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10); |
|
drow[x*2] = t0; drow[x*2+1] = t1; |
|
} |
|
} |
|
} |
|
|
|
}//namespace |
|
|
|
cv::detail::LKTrackerInvoker::LKTrackerInvoker( |
|
const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg, |
|
const Point2f* _prevPts, Point2f* _nextPts, |
|
uchar* _status, float* _err, |
|
Size _winSize, TermCriteria _criteria, |
|
int _level, int _maxLevel, int _flags, float _minEigThreshold ) |
|
{ |
|
prevImg = &_prevImg; |
|
prevDeriv = &_prevDeriv; |
|
nextImg = &_nextImg; |
|
prevPts = _prevPts; |
|
nextPts = _nextPts; |
|
status = _status; |
|
err = _err; |
|
winSize = _winSize; |
|
criteria = _criteria; |
|
level = _level; |
|
maxLevel = _maxLevel; |
|
flags = _flags; |
|
minEigThreshold = _minEigThreshold; |
|
} |
|
|
|
#if defined __arm__ && !CV_NEON |
|
typedef int64 acctype; |
|
typedef int itemtype; |
|
#else |
|
typedef float acctype; |
|
typedef float itemtype; |
|
#endif |
|
|
|
void cv::detail::LKTrackerInvoker::operator()(const Range& range) const |
|
{ |
|
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f); |
|
const Mat& I = *prevImg; |
|
const Mat& J = *nextImg; |
|
const Mat& derivI = *prevDeriv; |
|
|
|
int j, cn = I.channels(), cn2 = cn*2; |
|
cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2)); |
|
int derivDepth = DataType<deriv_type>::depth; |
|
|
|
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf); |
|
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn); |
|
|
|
for( int ptidx = range.start; ptidx < range.end; ptidx++ ) |
|
{ |
|
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level)); |
|
Point2f nextPt; |
|
if( level == maxLevel ) |
|
{ |
|
if( flags & OPTFLOW_USE_INITIAL_FLOW ) |
|
nextPt = nextPts[ptidx]*(float)(1./(1 << level)); |
|
else |
|
nextPt = prevPt; |
|
} |
|
else |
|
nextPt = nextPts[ptidx]*2.f; |
|
nextPts[ptidx] = nextPt; |
|
|
|
Point2i iprevPt, inextPt; |
|
prevPt -= halfWin; |
|
iprevPt.x = cvFloor(prevPt.x); |
|
iprevPt.y = cvFloor(prevPt.y); |
|
|
|
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols || |
|
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows ) |
|
{ |
|
if( level == 0 ) |
|
{ |
|
if( status ) |
|
status[ptidx] = false; |
|
if( err ) |
|
err[ptidx] = 0; |
|
} |
|
continue; |
|
} |
|
|
|
float a = prevPt.x - iprevPt.x; |
|
float b = prevPt.y - iprevPt.y; |
|
const int W_BITS = 14, W_BITS1 = 14; |
|
const float FLT_SCALE = 1.f/(1 << 20); |
|
int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS)); |
|
int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS)); |
|
int iw10 = cvRound((1.f - a)*b*(1 << W_BITS)); |
|
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10; |
|
|
|
int dstep = (int)(derivI.step/derivI.elemSize1()); |
|
int stepI = (int)(I.step/I.elemSize1()); |
|
int stepJ = (int)(J.step/J.elemSize1()); |
|
acctype iA11 = 0, iA12 = 0, iA22 = 0; |
|
float A11, A12, A22; |
|
|
|
#if CV_SSE2 |
|
__m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16)); |
|
__m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16)); |
|
__m128i z = _mm_setzero_si128(); |
|
__m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1)); |
|
__m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1)); |
|
__m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps(); |
|
#endif |
|
|
|
// extract the patch from the first image, compute covariation matrix of derivatives |
|
int x, y; |
|
for( y = 0; y < winSize.height; y++ ) |
|
{ |
|
const uchar* src = (const uchar*)I.data + (y + iprevPt.y)*stepI + iprevPt.x*cn; |
|
const deriv_type* dsrc = (const deriv_type*)derivI.data + (y + iprevPt.y)*dstep + iprevPt.x*cn2; |
|
|
|
deriv_type* Iptr = (deriv_type*)(IWinBuf.data + y*IWinBuf.step); |
|
deriv_type* dIptr = (deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step); |
|
|
|
x = 0; |
|
|
|
#if CV_SSE2 |
|
for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 ) |
|
{ |
|
__m128i v00, v01, v10, v11, t0, t1; |
|
|
|
v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z); |
|
v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z); |
|
v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + stepI)), z); |
|
v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + stepI + cn)), z); |
|
|
|
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), |
|
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); |
|
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5); |
|
_mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0)); |
|
|
|
v00 = _mm_loadu_si128((const __m128i*)(dsrc)); |
|
v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2)); |
|
v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep)); |
|
v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2)); |
|
|
|
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), |
|
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); |
|
t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0), |
|
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1)); |
|
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1); |
|
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1); |
|
v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ... |
|
|
|
_mm_storeu_si128((__m128i*)dIptr, v00); |
|
t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3 |
|
t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3 |
|
|
|
__m128 fy = _mm_cvtepi32_ps(t0); |
|
__m128 fx = _mm_cvtepi32_ps(t1); |
|
|
|
qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy)); |
|
qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy)); |
|
qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx)); |
|
} |
|
#endif |
|
|
|
for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 ) |
|
{ |
|
int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 + |
|
src[x+stepI]*iw10 + src[x+stepI+cn]*iw11, W_BITS1-5); |
|
int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 + |
|
dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1); |
|
int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 + |
|
dsrc[dstep+cn2+1]*iw11, W_BITS1); |
|
|
|
Iptr[x] = (short)ival; |
|
dIptr[0] = (short)ixval; |
|
dIptr[1] = (short)iyval; |
|
|
|
iA11 += (itemtype)(ixval*ixval); |
|
iA12 += (itemtype)(ixval*iyval); |
|
iA22 += (itemtype)(iyval*iyval); |
|
} |
|
} |
|
|
|
#if CV_SSE2 |
|
float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4]; |
|
_mm_store_ps(A11buf, qA11); |
|
_mm_store_ps(A12buf, qA12); |
|
_mm_store_ps(A22buf, qA22); |
|
iA11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3]; |
|
iA12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3]; |
|
iA22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3]; |
|
#endif |
|
|
|
A11 = iA11*FLT_SCALE; |
|
A12 = iA12*FLT_SCALE; |
|
A22 = iA22*FLT_SCALE; |
|
|
|
float D = A11*A22 - A12*A12; |
|
float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) + |
|
4.f*A12*A12))/(2*winSize.width*winSize.height); |
|
|
|
if( err && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) != 0 ) |
|
err[ptidx] = (float)minEig; |
|
|
|
if( minEig < minEigThreshold || D < FLT_EPSILON ) |
|
{ |
|
if( level == 0 && status ) |
|
status[ptidx] = false; |
|
continue; |
|
} |
|
|
|
D = 1.f/D; |
|
|
|
nextPt -= halfWin; |
|
Point2f prevDelta; |
|
|
|
for( j = 0; j < criteria.maxCount; j++ ) |
|
{ |
|
inextPt.x = cvFloor(nextPt.x); |
|
inextPt.y = cvFloor(nextPt.y); |
|
|
|
if( inextPt.x < -winSize.width || inextPt.x >= J.cols || |
|
inextPt.y < -winSize.height || inextPt.y >= J.rows ) |
|
{ |
|
if( level == 0 && status ) |
|
status[ptidx] = false; |
|
break; |
|
} |
|
|
|
a = nextPt.x - inextPt.x; |
|
b = nextPt.y - inextPt.y; |
|
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS)); |
|
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS)); |
|
iw10 = cvRound((1.f - a)*b*(1 << W_BITS)); |
|
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10; |
|
acctype ib1 = 0, ib2 = 0; |
|
float b1, b2; |
|
#if CV_SSE2 |
|
qw0 = _mm_set1_epi32(iw00 + (iw01 << 16)); |
|
qw1 = _mm_set1_epi32(iw10 + (iw11 << 16)); |
|
__m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps(); |
|
#endif |
|
|
|
for( y = 0; y < winSize.height; y++ ) |
|
{ |
|
const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*stepJ + inextPt.x*cn; |
|
const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step); |
|
const deriv_type* dIptr = (const deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step); |
|
|
|
x = 0; |
|
|
|
#if CV_SSE2 |
|
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 ) |
|
{ |
|
__m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1; |
|
__m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z); |
|
__m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z); |
|
__m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + stepJ)), z); |
|
__m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + stepJ + cn)), z); |
|
|
|
__m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), |
|
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); |
|
__m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0), |
|
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1)); |
|
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5); |
|
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5); |
|
diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0); |
|
diff1 = _mm_unpackhi_epi16(diff0, diff0); |
|
diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ... |
|
v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ... |
|
v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8)); |
|
v10 = _mm_mullo_epi16(v00, diff0); |
|
v11 = _mm_mulhi_epi16(v00, diff0); |
|
v00 = _mm_unpacklo_epi16(v10, v11); |
|
v10 = _mm_unpackhi_epi16(v10, v11); |
|
qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00)); |
|
qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10)); |
|
v10 = _mm_mullo_epi16(v01, diff1); |
|
v11 = _mm_mulhi_epi16(v01, diff1); |
|
v00 = _mm_unpacklo_epi16(v10, v11); |
|
v10 = _mm_unpackhi_epi16(v10, v11); |
|
qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00)); |
|
qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10)); |
|
} |
|
#endif |
|
|
|
for( ; x < winSize.width*cn; x++, dIptr += 2 ) |
|
{ |
|
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 + |
|
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11, |
|
W_BITS1-5) - Iptr[x]; |
|
ib1 += (itemtype)(diff*dIptr[0]); |
|
ib2 += (itemtype)(diff*dIptr[1]); |
|
} |
|
} |
|
|
|
#if CV_SSE2 |
|
float CV_DECL_ALIGNED(16) bbuf[4]; |
|
_mm_store_ps(bbuf, _mm_add_ps(qb0, qb1)); |
|
ib1 += bbuf[0] + bbuf[2]; |
|
ib2 += bbuf[1] + bbuf[3]; |
|
#endif |
|
|
|
b1 = ib1*FLT_SCALE; |
|
b2 = ib2*FLT_SCALE; |
|
|
|
Point2f delta( (float)((A12*b2 - A22*b1) * D), |
|
(float)((A12*b1 - A11*b2) * D)); |
|
//delta = -delta; |
|
|
|
nextPt += delta; |
|
nextPts[ptidx] = nextPt + halfWin; |
|
|
|
if( delta.ddot(delta) <= criteria.epsilon ) |
|
break; |
|
|
|
if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 && |
|
std::abs(delta.y + prevDelta.y) < 0.01 ) |
|
{ |
|
nextPts[ptidx] -= delta*0.5f; |
|
break; |
|
} |
|
prevDelta = delta; |
|
} |
|
|
|
if( status[ptidx] && err && level == 0 && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) == 0 ) |
|
{ |
|
Point2f nextPoint = nextPts[ptidx] - halfWin; |
|
Point inextPoint; |
|
|
|
inextPoint.x = cvFloor(nextPoint.x); |
|
inextPoint.y = cvFloor(nextPoint.y); |
|
|
|
if( inextPoint.x < -winSize.width || inextPoint.x >= J.cols || |
|
inextPoint.y < -winSize.height || inextPoint.y >= J.rows ) |
|
{ |
|
if( status ) |
|
status[ptidx] = false; |
|
continue; |
|
} |
|
|
|
float aa = nextPoint.x - inextPoint.x; |
|
float bb = nextPoint.y - inextPoint.y; |
|
iw00 = cvRound((1.f - aa)*(1.f - bb)*(1 << W_BITS)); |
|
iw01 = cvRound(aa*(1.f - bb)*(1 << W_BITS)); |
|
iw10 = cvRound((1.f - aa)*bb*(1 << W_BITS)); |
|
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10; |
|
float errval = 0.f; |
|
|
|
for( y = 0; y < winSize.height; y++ ) |
|
{ |
|
const uchar* Jptr = (const uchar*)J.data + (y + inextPoint.y)*stepJ + inextPoint.x*cn; |
|
const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step); |
|
|
|
for( x = 0; x < winSize.width*cn; x++ ) |
|
{ |
|
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 + |
|
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11, |
|
W_BITS1-5) - Iptr[x]; |
|
errval += std::abs((float)diff); |
|
} |
|
} |
|
err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height); |
|
} |
|
} |
|
} |
|
|
|
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives, |
|
int pyrBorder, int derivBorder, bool tryReuseInputImage) |
|
{ |
|
Mat img = _img.getMat(); |
|
CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 ); |
|
int pyrstep = withDerivatives ? 2 : 1; |
|
|
|
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0); |
|
|
|
int derivType = CV_MAKETYPE(DataType<cv::detail::deriv_type>::depth, img.channels() * 2); |
|
|
|
//level 0 |
|
bool lvl0IsSet = false; |
|
if(tryReuseInputImage && img.isSubmatrix() && (pyrBorder & BORDER_ISOLATED) == 0) |
|
{ |
|
Size wholeSize; |
|
Point ofs; |
|
img.locateROI(wholeSize, ofs); |
|
if (ofs.x >= winSize.width && ofs.y >= winSize.height |
|
&& ofs.x + img.cols + winSize.width <= wholeSize.width |
|
&& ofs.y + img.rows + winSize.height <= wholeSize.height) |
|
{ |
|
pyramid.getMatRef(0) = img; |
|
lvl0IsSet = true; |
|
} |
|
} |
|
|
|
if(!lvl0IsSet) |
|
{ |
|
Mat& temp = pyramid.getMatRef(0); |
|
|
|
if(!temp.empty()) |
|
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width); |
|
if(temp.type() != img.type() || temp.cols != winSize.width*2 + img.cols || temp.rows != winSize.height * 2 + img.rows) |
|
temp.create(img.rows + winSize.height*2, img.cols + winSize.width*2, img.type()); |
|
|
|
if(pyrBorder == BORDER_TRANSPARENT) |
|
img.copyTo(temp(Rect(winSize.width, winSize.height, img.cols, img.rows))); |
|
else |
|
copyMakeBorder(img, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder); |
|
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width); |
|
} |
|
|
|
Size sz = img.size(); |
|
Mat prevLevel = pyramid.getMatRef(0); |
|
Mat thisLevel = prevLevel; |
|
|
|
for(int level = 0; level <= maxLevel; ++level) |
|
{ |
|
if (level != 0) |
|
{ |
|
Mat& temp = pyramid.getMatRef(level * pyrstep); |
|
|
|
if(!temp.empty()) |
|
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width); |
|
if(temp.type() != img.type() || temp.cols != winSize.width*2 + sz.width || temp.rows != winSize.height * 2 + sz.height) |
|
temp.create(sz.height + winSize.height*2, sz.width + winSize.width*2, img.type()); |
|
|
|
thisLevel = temp(Rect(winSize.width, winSize.height, sz.width, sz.height)); |
|
pyrDown(prevLevel, thisLevel, sz); |
|
|
|
if(pyrBorder != BORDER_TRANSPARENT) |
|
copyMakeBorder(thisLevel, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder|BORDER_ISOLATED); |
|
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width); |
|
} |
|
|
|
if(withDerivatives) |
|
{ |
|
Mat& deriv = pyramid.getMatRef(level * pyrstep + 1); |
|
|
|
if(!deriv.empty()) |
|
deriv.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width); |
|
if(deriv.type() != derivType || deriv.cols != winSize.width*2 + sz.width || deriv.rows != winSize.height * 2 + sz.height) |
|
deriv.create(sz.height + winSize.height*2, sz.width + winSize.width*2, derivType); |
|
|
|
Mat derivI = deriv(Rect(winSize.width, winSize.height, sz.width, sz.height)); |
|
calcSharrDeriv(thisLevel, derivI); |
|
|
|
if(derivBorder != BORDER_TRANSPARENT) |
|
copyMakeBorder(derivI, deriv, winSize.height, winSize.height, winSize.width, winSize.width, derivBorder|BORDER_ISOLATED); |
|
deriv.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width); |
|
} |
|
|
|
sz = Size((sz.width+1)/2, (sz.height+1)/2); |
|
if( sz.width <= winSize.width || sz.height <= winSize.height ) |
|
{ |
|
pyramid.create(1, (level + 1) * pyrstep, 0 /*type*/, -1, true, 0);//check this |
|
return level; |
|
} |
|
|
|
prevLevel = thisLevel; |
|
} |
|
|
|
return maxLevel; |
|
} |
|
|
|
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg, |
|
InputArray _prevPts, InputOutputArray _nextPts, |
|
OutputArray _status, OutputArray _err, |
|
Size winSize, int maxLevel, |
|
TermCriteria criteria, |
|
int flags, double minEigThreshold ) |
|
{ |
|
Mat prevPtsMat = _prevPts.getMat(); |
|
const int derivDepth = DataType<cv::detail::deriv_type>::depth; |
|
|
|
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 ); |
|
|
|
int level=0, i, npoints; |
|
CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 ); |
|
|
|
if( npoints == 0 ) |
|
{ |
|
_nextPts.release(); |
|
_status.release(); |
|
_err.release(); |
|
return; |
|
} |
|
|
|
if( !(flags & OPTFLOW_USE_INITIAL_FLOW) ) |
|
_nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true); |
|
|
|
Mat nextPtsMat = _nextPts.getMat(); |
|
CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints ); |
|
|
|
const Point2f* prevPts = (const Point2f*)prevPtsMat.data; |
|
Point2f* nextPts = (Point2f*)nextPtsMat.data; |
|
|
|
_status.create((int)npoints, 1, CV_8U, -1, true); |
|
Mat statusMat = _status.getMat(), errMat; |
|
CV_Assert( statusMat.isContinuous() ); |
|
uchar* status = statusMat.data; |
|
float* err = 0; |
|
|
|
for( i = 0; i < npoints; i++ ) |
|
status[i] = true; |
|
|
|
if( _err.needed() ) |
|
{ |
|
_err.create((int)npoints, 1, CV_32F, -1, true); |
|
errMat = _err.getMat(); |
|
CV_Assert( errMat.isContinuous() ); |
|
err = (float*)errMat.data; |
|
} |
|
|
|
std::vector<Mat> prevPyr, nextPyr; |
|
int levels1 = -1; |
|
int lvlStep1 = 1; |
|
int levels2 = -1; |
|
int lvlStep2 = 1; |
|
|
|
if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT) |
|
{ |
|
_prevImg.getMatVector(prevPyr); |
|
|
|
levels1 = int(prevPyr.size()) - 1; |
|
CV_Assert(levels1 >= 0); |
|
|
|
if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth) |
|
{ |
|
lvlStep1 = 2; |
|
levels1 /= 2; |
|
} |
|
|
|
// ensure that pyramid has reqired padding |
|
if(levels1 > 0) |
|
{ |
|
Size fullSize; |
|
Point ofs; |
|
prevPyr[lvlStep1].locateROI(fullSize, ofs); |
|
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height |
|
&& ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width |
|
&& ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height); |
|
} |
|
|
|
if(levels1 < maxLevel) |
|
maxLevel = levels1; |
|
} |
|
|
|
if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT) |
|
{ |
|
_nextImg.getMatVector(nextPyr); |
|
|
|
levels2 = int(nextPyr.size()) - 1; |
|
CV_Assert(levels2 >= 0); |
|
|
|
if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth) |
|
{ |
|
lvlStep2 = 2; |
|
levels2 /= 2; |
|
} |
|
|
|
// ensure that pyramid has reqired padding |
|
if(levels2 > 0) |
|
{ |
|
Size fullSize; |
|
Point ofs; |
|
nextPyr[lvlStep2].locateROI(fullSize, ofs); |
|
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height |
|
&& ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width |
|
&& ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height); |
|
} |
|
|
|
if(levels2 < maxLevel) |
|
maxLevel = levels2; |
|
} |
|
|
|
if (levels1 < 0) |
|
maxLevel = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false); |
|
|
|
if (levels2 < 0) |
|
maxLevel = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false); |
|
|
|
if( (criteria.type & TermCriteria::COUNT) == 0 ) |
|
criteria.maxCount = 30; |
|
else |
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100); |
|
if( (criteria.type & TermCriteria::EPS) == 0 ) |
|
criteria.epsilon = 0.01; |
|
else |
|
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.); |
|
criteria.epsilon *= criteria.epsilon; |
|
|
|
// dI/dx ~ Ix, dI/dy ~ Iy |
|
Mat derivIBuf; |
|
if(lvlStep1 == 1) |
|
derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2)); |
|
|
|
for( level = maxLevel; level >= 0; level-- ) |
|
{ |
|
Mat derivI; |
|
if(lvlStep1 == 1) |
|
{ |
|
Size imgSize = prevPyr[level * lvlStep1].size(); |
|
Mat _derivI( imgSize.height + winSize.height*2, |
|
imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data ); |
|
derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height)); |
|
calcSharrDeriv(prevPyr[level * lvlStep1], derivI); |
|
copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED); |
|
} |
|
else |
|
derivI = prevPyr[level * lvlStep1 + 1]; |
|
|
|
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size()); |
|
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type()); |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
typedef tegra::LKTrackerInvoker<cv::detail::LKTrackerInvoker> LKTrackerInvoker; |
|
#else |
|
typedef cv::detail::LKTrackerInvoker LKTrackerInvoker; |
|
#endif |
|
|
|
parallel_for_(Range(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI, |
|
nextPyr[level * lvlStep2], prevPts, nextPts, |
|
status, err, |
|
winSize, criteria, level, maxLevel, |
|
flags, (float)minEigThreshold)); |
|
} |
|
} |
|
|
|
namespace cv |
|
{ |
|
|
|
static void |
|
getRTMatrix( const Point2f* a, const Point2f* b, |
|
int count, Mat& M, bool fullAffine ) |
|
{ |
|
CV_Assert( M.isContinuous() ); |
|
|
|
if( fullAffine ) |
|
{ |
|
double sa[6][6]={{0.}}, sb[6]={0.}; |
|
Mat A( 6, 6, CV_64F, &sa[0][0] ), B( 6, 1, CV_64F, sb ); |
|
Mat MM = M.reshape(1, 6); |
|
|
|
for( int i = 0; i < count; i++ ) |
|
{ |
|
sa[0][0] += a[i].x*a[i].x; |
|
sa[0][1] += a[i].y*a[i].x; |
|
sa[0][2] += a[i].x; |
|
|
|
sa[1][1] += a[i].y*a[i].y; |
|
sa[1][2] += a[i].y; |
|
|
|
sa[2][2] += 1; |
|
|
|
sb[0] += a[i].x*b[i].x; |
|
sb[1] += a[i].y*b[i].x; |
|
sb[2] += b[i].x; |
|
sb[3] += a[i].x*b[i].y; |
|
sb[4] += a[i].y*b[i].y; |
|
sb[5] += b[i].y; |
|
} |
|
|
|
sa[3][4] = sa[4][3] = sa[1][0] = sa[0][1]; |
|
sa[3][5] = sa[5][3] = sa[2][0] = sa[0][2]; |
|
sa[4][5] = sa[5][4] = sa[2][1] = sa[1][2]; |
|
|
|
sa[3][3] = sa[0][0]; |
|
sa[4][4] = sa[1][1]; |
|
sa[5][5] = sa[2][2]; |
|
|
|
solve( A, B, MM, DECOMP_EIG ); |
|
} |
|
else |
|
{ |
|
double sa[4][4]={{0.}}, sb[4]={0.}, m[4]; |
|
Mat A( 4, 4, CV_64F, sa ), B( 4, 1, CV_64F, sb ); |
|
Mat MM( 4, 1, CV_64F, m ); |
|
|
|
for( int i = 0; i < count; i++ ) |
|
{ |
|
sa[0][0] += a[i].x*a[i].x + a[i].y*a[i].y; |
|
sa[0][2] += a[i].x; |
|
sa[0][3] += a[i].y; |
|
|
|
|
|
sa[2][1] += -a[i].y; |
|
sa[2][2] += 1; |
|
|
|
sa[3][0] += a[i].y; |
|
sa[3][1] += a[i].x; |
|
sa[3][3] += 1; |
|
|
|
sb[0] += a[i].x*b[i].x + a[i].y*b[i].y; |
|
sb[1] += a[i].x*b[i].y - a[i].y*b[i].x; |
|
sb[2] += b[i].x; |
|
sb[3] += b[i].y; |
|
} |
|
|
|
sa[1][1] = sa[0][0]; |
|
sa[2][1] = sa[1][2] = -sa[0][3]; |
|
sa[3][1] = sa[1][3] = sa[2][0] = sa[0][2]; |
|
sa[2][2] = sa[3][3] = count; |
|
sa[3][0] = sa[0][3]; |
|
|
|
solve( A, B, MM, DECOMP_EIG ); |
|
|
|
double* om = M.ptr<double>(); |
|
om[0] = om[4] = m[0]; |
|
om[1] = -m[1]; |
|
om[3] = m[1]; |
|
om[2] = m[2]; |
|
om[5] = m[3]; |
|
} |
|
} |
|
|
|
} |
|
|
|
cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine ) |
|
{ |
|
Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat(); |
|
|
|
const int COUNT = 15; |
|
const int WIDTH = 160, HEIGHT = 120; |
|
const int RANSAC_MAX_ITERS = 500; |
|
const int RANSAC_SIZE0 = 3; |
|
const double RANSAC_GOOD_RATIO = 0.5; |
|
|
|
std::vector<Point2f> pA, pB; |
|
std::vector<int> good_idx; |
|
std::vector<uchar> status; |
|
|
|
double scale = 1.; |
|
int i, j, k, k1; |
|
|
|
RNG rng((uint64)-1); |
|
int good_count = 0; |
|
|
|
if( A.size() != B.size() ) |
|
CV_Error( Error::StsUnmatchedSizes, "Both input images must have the same size" ); |
|
|
|
if( A.type() != B.type() ) |
|
CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" ); |
|
|
|
int count = A.checkVector(2); |
|
|
|
if( count > 0 ) |
|
{ |
|
A.reshape(2, count).convertTo(pA, CV_32F); |
|
B.reshape(2, count).convertTo(pB, CV_32F); |
|
} |
|
else if( A.depth() == CV_8U ) |
|
{ |
|
int cn = A.channels(); |
|
CV_Assert( cn == 1 || cn == 3 || cn == 4 ); |
|
Size sz0 = A.size(); |
|
Size sz1(WIDTH, HEIGHT); |
|
|
|
scale = std::max(1., std::max( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height )); |
|
|
|
sz1.width = cvRound( sz0.width * scale ); |
|
sz1.height = cvRound( sz0.height * scale ); |
|
|
|
bool equalSizes = sz1.width == sz0.width && sz1.height == sz0.height; |
|
|
|
if( !equalSizes || cn != 1 ) |
|
{ |
|
Mat sA, sB; |
|
|
|
if( cn != 1 ) |
|
{ |
|
Mat gray; |
|
cvtColor(A, gray, COLOR_BGR2GRAY); |
|
resize(gray, sA, sz1, 0., 0., INTER_AREA); |
|
cvtColor(B, gray, COLOR_BGR2GRAY); |
|
resize(gray, sB, sz1, 0., 0., INTER_AREA); |
|
} |
|
else |
|
{ |
|
resize(A, sA, sz1, 0., 0., INTER_AREA); |
|
resize(B, sB, sz1, 0., 0., INTER_AREA); |
|
} |
|
|
|
A = sA; |
|
B = sB; |
|
} |
|
|
|
int count_y = COUNT; |
|
int count_x = cvRound((double)COUNT*sz1.width/sz1.height); |
|
count = count_x * count_y; |
|
|
|
pA.resize(count); |
|
pB.resize(count); |
|
status.resize(count); |
|
|
|
for( i = 0, k = 0; i < count_y; i++ ) |
|
for( j = 0; j < count_x; j++, k++ ) |
|
{ |
|
pA[k].x = (j+0.5f)*sz1.width/count_x; |
|
pA[k].y = (i+0.5f)*sz1.height/count_y; |
|
} |
|
|
|
// find the corresponding points in B |
|
calcOpticalFlowPyrLK(A, B, pA, pB, status, noArray(), Size(21, 21), 3, |
|
TermCriteria(TermCriteria::MAX_ITER,40,0.1)); |
|
|
|
// repack the remained points |
|
for( i = 0, k = 0; i < count; i++ ) |
|
if( status[i] ) |
|
{ |
|
if( i > k ) |
|
{ |
|
pA[k] = pA[i]; |
|
pB[k] = pB[i]; |
|
} |
|
k++; |
|
} |
|
count = k; |
|
pA.resize(count); |
|
pB.resize(count); |
|
} |
|
else |
|
CV_Error( Error::StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" ); |
|
|
|
good_idx.resize(count); |
|
|
|
if( count < RANSAC_SIZE0 ) |
|
return Mat(); |
|
|
|
Rect brect = boundingRect(pB); |
|
|
|
// RANSAC stuff: |
|
// 1. find the consensus |
|
for( k = 0; k < RANSAC_MAX_ITERS; k++ ) |
|
{ |
|
int idx[RANSAC_SIZE0]; |
|
Point2f a[RANSAC_SIZE0]; |
|
Point2f b[RANSAC_SIZE0]; |
|
|
|
// choose random 3 non-complanar points from A & B |
|
for( i = 0; i < RANSAC_SIZE0; i++ ) |
|
{ |
|
for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ ) |
|
{ |
|
idx[i] = rng.uniform(0, count); |
|
|
|
for( j = 0; j < i; j++ ) |
|
{ |
|
if( idx[j] == idx[i] ) |
|
break; |
|
// check that the points are not very close one each other |
|
if( fabs(pA[idx[i]].x - pA[idx[j]].x) + |
|
fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON ) |
|
break; |
|
if( fabs(pB[idx[i]].x - pB[idx[j]].x) + |
|
fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON ) |
|
break; |
|
} |
|
|
|
if( j < i ) |
|
continue; |
|
|
|
if( i+1 == RANSAC_SIZE0 ) |
|
{ |
|
// additional check for non-complanar vectors |
|
a[0] = pA[idx[0]]; |
|
a[1] = pA[idx[1]]; |
|
a[2] = pA[idx[2]]; |
|
|
|
b[0] = pB[idx[0]]; |
|
b[1] = pB[idx[1]]; |
|
b[2] = pB[idx[2]]; |
|
|
|
double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y; |
|
double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y; |
|
double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y; |
|
double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y; |
|
const double eps = 0.01; |
|
|
|
if( fabs(dax1*day2 - day1*dax2) < eps*std::sqrt(dax1*dax1+day1*day1)*std::sqrt(dax2*dax2+day2*day2) || |
|
fabs(dbx1*dby2 - dby1*dbx2) < eps*std::sqrt(dbx1*dbx1+dby1*dby1)*std::sqrt(dbx2*dbx2+dby2*dby2) ) |
|
continue; |
|
} |
|
break; |
|
} |
|
|
|
if( k1 >= RANSAC_MAX_ITERS ) |
|
break; |
|
} |
|
|
|
if( i < RANSAC_SIZE0 ) |
|
continue; |
|
|
|
// estimate the transformation using 3 points |
|
getRTMatrix( a, b, 3, M, fullAffine ); |
|
|
|
const double* m = M.ptr<double>(); |
|
for( i = 0, good_count = 0; i < count; i++ ) |
|
{ |
|
if( std::abs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) + |
|
std::abs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < std::max(brect.width,brect.height)*0.05 ) |
|
good_idx[good_count++] = i; |
|
} |
|
|
|
if( good_count >= count*RANSAC_GOOD_RATIO ) |
|
break; |
|
} |
|
|
|
if( k >= RANSAC_MAX_ITERS ) |
|
return Mat(); |
|
|
|
if( good_count < count ) |
|
{ |
|
for( i = 0; i < good_count; i++ ) |
|
{ |
|
j = good_idx[i]; |
|
pA[i] = pA[j]; |
|
pB[i] = pB[j]; |
|
} |
|
} |
|
|
|
getRTMatrix( &pA[0], &pB[0], good_count, M, fullAffine ); |
|
M.at<double>(0, 2) /= scale; |
|
M.at<double>(1, 2) /= scale; |
|
|
|
return M; |
|
} |
|
|
|
/* End of file. */
|
|
|