mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
472 lines
17 KiB
472 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <float.h> |
|
|
|
// to make sure we can use these short names |
|
#undef K |
|
#undef L |
|
#undef T |
|
|
|
// This is based on the "An Improved Adaptive Background Mixture Model for |
|
// Real-time Tracking with Shadow Detection" by P. KaewTraKulPong and R. Bowden |
|
// http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf |
|
// |
|
// The windowing method is used, but not the shadow detection. I make some of my |
|
// own modifications which make more sense. There are some errors in some of their |
|
// equations. |
|
// |
|
|
|
namespace cv |
|
{ |
|
|
|
static const int defaultNMixtures = 5; |
|
static const int defaultHistory = 200; |
|
static const double defaultBackgroundRatio = 0.7; |
|
static const double defaultVarThreshold = 2.5*2.5; |
|
static const double defaultNoiseSigma = 30*0.5; |
|
static const double defaultInitialWeight = 0.05; |
|
|
|
class BackgroundSubtractorMOGImpl : public BackgroundSubtractorMOG |
|
{ |
|
public: |
|
//! the default constructor |
|
BackgroundSubtractorMOGImpl() |
|
{ |
|
frameSize = Size(0,0); |
|
frameType = 0; |
|
|
|
nframes = 0; |
|
nmixtures = defaultNMixtures; |
|
history = defaultHistory; |
|
varThreshold = defaultVarThreshold; |
|
backgroundRatio = defaultBackgroundRatio; |
|
noiseSigma = defaultNoiseSigma; |
|
name_ = "BackgroundSubtractor.MOG"; |
|
} |
|
// the full constructor that takes the length of the history, |
|
// the number of gaussian mixtures, the background ratio parameter and the noise strength |
|
BackgroundSubtractorMOGImpl(int _history, int _nmixtures, double _backgroundRatio, double _noiseSigma=0) |
|
{ |
|
frameSize = Size(0,0); |
|
frameType = 0; |
|
|
|
nframes = 0; |
|
nmixtures = std::min(_nmixtures > 0 ? _nmixtures : defaultNMixtures, 8); |
|
history = _history > 0 ? _history : defaultHistory; |
|
varThreshold = defaultVarThreshold; |
|
backgroundRatio = std::min(_backgroundRatio > 0 ? _backgroundRatio : 0.95, 1.); |
|
noiseSigma = _noiseSigma <= 0 ? defaultNoiseSigma : _noiseSigma; |
|
} |
|
|
|
//! the update operator |
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate=0); |
|
|
|
//! re-initiaization method |
|
virtual void initialize(Size _frameSize, int _frameType) |
|
{ |
|
frameSize = _frameSize; |
|
frameType = _frameType; |
|
nframes = 0; |
|
|
|
int nchannels = CV_MAT_CN(frameType); |
|
CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U ); |
|
|
|
// for each gaussian mixture of each pixel bg model we store ... |
|
// the mixture sort key (w/sum_of_variances), the mixture weight (w), |
|
// the mean (nchannels values) and |
|
// the diagonal covariance matrix (another nchannels values) |
|
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + 2*nchannels), CV_32F ); |
|
bgmodel = Scalar::all(0); |
|
} |
|
|
|
virtual AlgorithmInfo* info() const { return 0; } |
|
|
|
virtual void getBackgroundImage(OutputArray) const |
|
{ |
|
CV_Error( Error::StsNotImplemented, "" ); |
|
} |
|
|
|
virtual int getHistory() const { return history; } |
|
virtual void setHistory(int _nframes) { history = _nframes; } |
|
|
|
virtual int getNMixtures() const { return nmixtures; } |
|
virtual void setNMixtures(int nmix) { nmixtures = nmix; } |
|
|
|
virtual double getBackgroundRatio() const { return backgroundRatio; } |
|
virtual void setBackgroundRatio(double _backgroundRatio) { backgroundRatio = _backgroundRatio; } |
|
|
|
virtual double getNoiseSigma() const { return noiseSigma; } |
|
virtual void setNoiseSigma(double _noiseSigma) { noiseSigma = _noiseSigma; } |
|
|
|
virtual void write(FileStorage& fs) const |
|
{ |
|
fs << "name" << name_ |
|
<< "history" << history |
|
<< "nmixtures" << nmixtures |
|
<< "backgroundRatio" << backgroundRatio |
|
<< "noiseSigma" << noiseSigma; |
|
} |
|
|
|
virtual void read(const FileNode& fn) |
|
{ |
|
CV_Assert( (String)fn["name"] == name_ ); |
|
history = (int)fn["history"]; |
|
nmixtures = (int)fn["nmixtures"]; |
|
backgroundRatio = (double)fn["backgroundRatio"]; |
|
noiseSigma = (double)fn["noiseSigma"]; |
|
} |
|
|
|
protected: |
|
Size frameSize; |
|
int frameType; |
|
Mat bgmodel; |
|
int nframes; |
|
int history; |
|
int nmixtures; |
|
double varThreshold; |
|
double backgroundRatio; |
|
double noiseSigma; |
|
String name_; |
|
}; |
|
|
|
|
|
template<typename VT> struct MixData |
|
{ |
|
float sortKey; |
|
float weight; |
|
VT mean; |
|
VT var; |
|
}; |
|
|
|
|
|
static void process8uC1( const Mat& image, Mat& fgmask, double learningRate, |
|
Mat& bgmodel, int nmixtures, double backgroundRatio, |
|
double varThreshold, double noiseSigma ) |
|
{ |
|
int x, y, k, k1, rows = image.rows, cols = image.cols; |
|
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold; |
|
int K = nmixtures; |
|
MixData<float>* mptr = (MixData<float>*)bgmodel.data; |
|
|
|
const float w0 = (float)defaultInitialWeight; |
|
const float sk0 = (float)(w0/(defaultNoiseSigma*2)); |
|
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4); |
|
const float minVar = (float)(noiseSigma*noiseSigma); |
|
|
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
const uchar* src = image.ptr<uchar>(y); |
|
uchar* dst = fgmask.ptr<uchar>(y); |
|
|
|
if( alpha > 0 ) |
|
{ |
|
for( x = 0; x < cols; x++, mptr += K ) |
|
{ |
|
float wsum = 0; |
|
float pix = src[x]; |
|
int kHit = -1, kForeground = -1; |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
float w = mptr[k].weight; |
|
wsum += w; |
|
if( w < FLT_EPSILON ) |
|
break; |
|
float mu = mptr[k].mean; |
|
float var = mptr[k].var; |
|
float diff = pix - mu; |
|
float d2 = diff*diff; |
|
if( d2 < vT*var ) |
|
{ |
|
wsum -= w; |
|
float dw = alpha*(1.f - w); |
|
mptr[k].weight = w + dw; |
|
mptr[k].mean = mu + alpha*diff; |
|
var = std::max(var + alpha*(d2 - var), minVar); |
|
mptr[k].var = var; |
|
mptr[k].sortKey = w/std::sqrt(var); |
|
|
|
for( k1 = k-1; k1 >= 0; k1-- ) |
|
{ |
|
if( mptr[k1].sortKey >= mptr[k1+1].sortKey ) |
|
break; |
|
std::swap( mptr[k1], mptr[k1+1] ); |
|
} |
|
|
|
kHit = k1+1; |
|
break; |
|
} |
|
} |
|
|
|
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one |
|
{ |
|
kHit = k = std::min(k, K-1); |
|
wsum += w0 - mptr[k].weight; |
|
mptr[k].weight = w0; |
|
mptr[k].mean = pix; |
|
mptr[k].var = var0; |
|
mptr[k].sortKey = sk0; |
|
} |
|
else |
|
for( ; k < K; k++ ) |
|
wsum += mptr[k].weight; |
|
|
|
float wscale = 1.f/wsum; |
|
wsum = 0; |
|
for( k = 0; k < K; k++ ) |
|
{ |
|
wsum += mptr[k].weight *= wscale; |
|
mptr[k].sortKey *= wscale; |
|
if( wsum > T && kForeground < 0 ) |
|
kForeground = k+1; |
|
} |
|
|
|
dst[x] = (uchar)(-(kHit >= kForeground)); |
|
} |
|
} |
|
else |
|
{ |
|
for( x = 0; x < cols; x++, mptr += K ) |
|
{ |
|
float pix = src[x]; |
|
int kHit = -1, kForeground = -1; |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
if( mptr[k].weight < FLT_EPSILON ) |
|
break; |
|
float mu = mptr[k].mean; |
|
float var = mptr[k].var; |
|
float diff = pix - mu; |
|
float d2 = diff*diff; |
|
if( d2 < vT*var ) |
|
{ |
|
kHit = k; |
|
break; |
|
} |
|
} |
|
|
|
if( kHit >= 0 ) |
|
{ |
|
float wsum = 0; |
|
for( k = 0; k < K; k++ ) |
|
{ |
|
wsum += mptr[k].weight; |
|
if( wsum > T ) |
|
{ |
|
kForeground = k+1; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static void process8uC3( const Mat& image, Mat& fgmask, double learningRate, |
|
Mat& bgmodel, int nmixtures, double backgroundRatio, |
|
double varThreshold, double noiseSigma ) |
|
{ |
|
int x, y, k, k1, rows = image.rows, cols = image.cols; |
|
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold; |
|
int K = nmixtures; |
|
|
|
const float w0 = (float)defaultInitialWeight; |
|
const float sk0 = (float)(w0/(defaultNoiseSigma*2*std::sqrt(3.))); |
|
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4); |
|
const float minVar = (float)(noiseSigma*noiseSigma); |
|
MixData<Vec3f>* mptr = (MixData<Vec3f>*)bgmodel.data; |
|
|
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
const uchar* src = image.ptr<uchar>(y); |
|
uchar* dst = fgmask.ptr<uchar>(y); |
|
|
|
if( alpha > 0 ) |
|
{ |
|
for( x = 0; x < cols; x++, mptr += K ) |
|
{ |
|
float wsum = 0; |
|
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]); |
|
int kHit = -1, kForeground = -1; |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
float w = mptr[k].weight; |
|
wsum += w; |
|
if( w < FLT_EPSILON ) |
|
break; |
|
Vec3f mu = mptr[k].mean; |
|
Vec3f var = mptr[k].var; |
|
Vec3f diff = pix - mu; |
|
float d2 = diff.dot(diff); |
|
if( d2 < vT*(var[0] + var[1] + var[2]) ) |
|
{ |
|
wsum -= w; |
|
float dw = alpha*(1.f - w); |
|
mptr[k].weight = w + dw; |
|
mptr[k].mean = mu + alpha*diff; |
|
var = Vec3f(std::max(var[0] + alpha*(diff[0]*diff[0] - var[0]), minVar), |
|
std::max(var[1] + alpha*(diff[1]*diff[1] - var[1]), minVar), |
|
std::max(var[2] + alpha*(diff[2]*diff[2] - var[2]), minVar)); |
|
mptr[k].var = var; |
|
mptr[k].sortKey = w/std::sqrt(var[0] + var[1] + var[2]); |
|
|
|
for( k1 = k-1; k1 >= 0; k1-- ) |
|
{ |
|
if( mptr[k1].sortKey >= mptr[k1+1].sortKey ) |
|
break; |
|
std::swap( mptr[k1], mptr[k1+1] ); |
|
} |
|
|
|
kHit = k1+1; |
|
break; |
|
} |
|
} |
|
|
|
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one |
|
{ |
|
kHit = k = std::min(k, K-1); |
|
wsum += w0 - mptr[k].weight; |
|
mptr[k].weight = w0; |
|
mptr[k].mean = pix; |
|
mptr[k].var = Vec3f(var0, var0, var0); |
|
mptr[k].sortKey = sk0; |
|
} |
|
else |
|
for( ; k < K; k++ ) |
|
wsum += mptr[k].weight; |
|
|
|
float wscale = 1.f/wsum; |
|
wsum = 0; |
|
for( k = 0; k < K; k++ ) |
|
{ |
|
wsum += mptr[k].weight *= wscale; |
|
mptr[k].sortKey *= wscale; |
|
if( wsum > T && kForeground < 0 ) |
|
kForeground = k+1; |
|
} |
|
|
|
dst[x] = (uchar)(-(kHit >= kForeground)); |
|
} |
|
} |
|
else |
|
{ |
|
for( x = 0; x < cols; x++, mptr += K ) |
|
{ |
|
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]); |
|
int kHit = -1, kForeground = -1; |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
if( mptr[k].weight < FLT_EPSILON ) |
|
break; |
|
Vec3f mu = mptr[k].mean; |
|
Vec3f var = mptr[k].var; |
|
Vec3f diff = pix - mu; |
|
float d2 = diff.dot(diff); |
|
if( d2 < vT*(var[0] + var[1] + var[2]) ) |
|
{ |
|
kHit = k; |
|
break; |
|
} |
|
} |
|
|
|
if( kHit >= 0 ) |
|
{ |
|
float wsum = 0; |
|
for( k = 0; k < K; k++ ) |
|
{ |
|
wsum += mptr[k].weight; |
|
if( wsum > T ) |
|
{ |
|
kForeground = k+1; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void BackgroundSubtractorMOGImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate) |
|
{ |
|
Mat image = _image.getMat(); |
|
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType; |
|
|
|
if( needToInitialize ) |
|
initialize(image.size(), image.type()); |
|
|
|
CV_Assert( image.depth() == CV_8U ); |
|
_fgmask.create( image.size(), CV_8U ); |
|
Mat fgmask = _fgmask.getMat(); |
|
|
|
++nframes; |
|
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( nframes, history ); |
|
CV_Assert(learningRate >= 0); |
|
|
|
if( image.type() == CV_8UC1 ) |
|
process8uC1( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma ); |
|
else if( image.type() == CV_8UC3 ) |
|
process8uC3( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma ); |
|
else |
|
CV_Error( Error::StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in BackgroundSubtractorMOG" ); |
|
} |
|
|
|
Ptr<BackgroundSubtractorMOG> createBackgroundSubtractorMOG(int history, int nmixtures, |
|
double backgroundRatio, double noiseSigma) |
|
{ |
|
return makePtr<BackgroundSubtractorMOGImpl>(history, nmixtures, backgroundRatio, noiseSigma); |
|
} |
|
|
|
} |
|
|
|
/* End of file. */
|
|
|