mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
11 KiB
351 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/photo.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "hdr_common.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
class MergeDebevecImpl : public MergeDebevec |
|
{ |
|
public: |
|
MergeDebevecImpl() : |
|
name("MergeDebevec"), |
|
weights(tringleWeights()) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response) |
|
{ |
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
Mat times = _times.getMat(); |
|
|
|
CV_Assert(images.size() == times.total()); |
|
checkImageDimensions(images); |
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
int channels = images[0].channels(); |
|
Size size = images[0].size(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
dst.create(images[0].size(), CV_32FCC); |
|
Mat result = dst.getMat(); |
|
|
|
Mat response = input_response.getMat(); |
|
|
|
if(response.empty()) { |
|
response = linearResponse(channels); |
|
response.at<Vec3f>(0) = response.at<Vec3f>(1); |
|
} |
|
log(response, response); |
|
CV_Assert(response.rows == LDR_SIZE && response.cols == 1 && |
|
response.channels() == channels); |
|
|
|
Mat exp_values(times); |
|
log(exp_values, exp_values); |
|
|
|
result = Mat::zeros(size, CV_32FCC); |
|
std::vector<Mat> result_split; |
|
split(result, result_split); |
|
Mat weight_sum = Mat::zeros(size, CV_32F); |
|
|
|
for(size_t i = 0; i < images.size(); i++) { |
|
std::vector<Mat> splitted; |
|
split(images[i], splitted); |
|
|
|
Mat w = Mat::zeros(size, CV_32F); |
|
for(int c = 0; c < channels; c++) { |
|
LUT(splitted[c], weights, splitted[c]); |
|
w += splitted[c]; |
|
} |
|
w /= channels; |
|
|
|
Mat response_img; |
|
LUT(images[i], response, response_img); |
|
split(response_img, splitted); |
|
for(int c = 0; c < channels; c++) { |
|
result_split[c] += w.mul(splitted[c] - exp_values.at<float>((int)i)); |
|
} |
|
weight_sum += w; |
|
} |
|
weight_sum = 1.0f / weight_sum; |
|
for(int c = 0; c < channels; c++) { |
|
result_split[c] = result_split[c].mul(weight_sum); |
|
} |
|
merge(result_split, result); |
|
exp(result, result); |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray times) |
|
{ |
|
process(src, dst, times, Mat()); |
|
} |
|
|
|
protected: |
|
String name; |
|
Mat weights; |
|
}; |
|
|
|
Ptr<MergeDebevec> createMergeDebevec() |
|
{ |
|
return makePtr<MergeDebevecImpl>(); |
|
} |
|
|
|
class MergeMertensImpl : public MergeMertens |
|
{ |
|
public: |
|
MergeMertensImpl(float _wcon, float _wsat, float _wexp) : |
|
name("MergeMertens"), |
|
wcon(_wcon), |
|
wsat(_wsat), |
|
wexp(_wexp) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArrayOfArrays dst, InputArray, InputArray) |
|
{ |
|
process(src, dst); |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst) |
|
{ |
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
checkImageDimensions(images); |
|
|
|
int channels = images[0].channels(); |
|
CV_Assert(channels == 1 || channels == 3); |
|
Size size = images[0].size(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
std::vector<Mat> weights(images.size()); |
|
Mat weight_sum = Mat::zeros(size, CV_32F); |
|
|
|
for(size_t i = 0; i < images.size(); i++) { |
|
Mat img, gray, contrast, saturation, wellexp; |
|
std::vector<Mat> splitted(channels); |
|
|
|
images[i].convertTo(img, CV_32F, 1.0f/255.0f); |
|
if(channels == 3) { |
|
cvtColor(img, gray, COLOR_RGB2GRAY); |
|
} else { |
|
img.copyTo(gray); |
|
} |
|
split(img, splitted); |
|
|
|
Laplacian(gray, contrast, CV_32F); |
|
contrast = abs(contrast); |
|
|
|
Mat mean = Mat::zeros(size, CV_32F); |
|
for(int c = 0; c < channels; c++) { |
|
mean += splitted[c]; |
|
} |
|
mean /= channels; |
|
|
|
saturation = Mat::zeros(size, CV_32F); |
|
for(int c = 0; c < channels; c++) { |
|
Mat deviation = splitted[c] - mean; |
|
pow(deviation, 2.0f, deviation); |
|
saturation += deviation; |
|
} |
|
sqrt(saturation, saturation); |
|
|
|
wellexp = Mat::ones(size, CV_32F); |
|
for(int c = 0; c < channels; c++) { |
|
Mat exp = splitted[c] - 0.5f; |
|
pow(exp, 2.0f, exp); |
|
exp = -exp / 0.08f; |
|
wellexp = wellexp.mul(exp); |
|
} |
|
|
|
pow(contrast, wcon, contrast); |
|
pow(saturation, wsat, saturation); |
|
pow(wellexp, wexp, wellexp); |
|
|
|
weights[i] = contrast; |
|
if(channels == 3) { |
|
weights[i] = weights[i].mul(saturation); |
|
} |
|
weights[i] = weights[i].mul(wellexp); |
|
weight_sum += weights[i]; |
|
} |
|
int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f)); |
|
std::vector<Mat> res_pyr(maxlevel + 1); |
|
|
|
for(size_t i = 0; i < images.size(); i++) { |
|
weights[i] /= weight_sum; |
|
Mat img; |
|
images[i].convertTo(img, CV_32F, 1.0f/255.0f); |
|
|
|
std::vector<Mat> img_pyr, weight_pyr; |
|
buildPyramid(img, img_pyr, maxlevel); |
|
buildPyramid(weights[i], weight_pyr, maxlevel); |
|
|
|
for(int lvl = 0; lvl < maxlevel; lvl++) { |
|
Mat up; |
|
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size()); |
|
img_pyr[lvl] -= up; |
|
} |
|
for(int lvl = 0; lvl <= maxlevel; lvl++) { |
|
std::vector<Mat> splitted(channels); |
|
split(img_pyr[lvl], splitted); |
|
for(int c = 0; c < channels; c++) { |
|
splitted[c] = splitted[c].mul(weight_pyr[lvl]); |
|
} |
|
merge(splitted, img_pyr[lvl]); |
|
if(res_pyr[lvl].empty()) { |
|
res_pyr[lvl] = img_pyr[lvl]; |
|
} else { |
|
res_pyr[lvl] += img_pyr[lvl]; |
|
} |
|
} |
|
} |
|
for(int lvl = maxlevel; lvl > 0; lvl--) { |
|
Mat up; |
|
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size()); |
|
res_pyr[lvl - 1] += up; |
|
} |
|
dst.create(size, CV_32FCC); |
|
res_pyr[0].copyTo(dst.getMat()); |
|
} |
|
|
|
float getContrastWeight() const { return wcon; } |
|
void setContrastWeight(float val) { wcon = val; } |
|
|
|
float getSaturationWeight() const { return wsat; } |
|
void setSaturationWeight(float val) { wsat = val; } |
|
|
|
float getExposureWeight() const { return wexp; } |
|
void setExposureWeight(float val) { wexp = val; } |
|
|
|
void write(FileStorage& fs) const |
|
{ |
|
fs << "name" << name |
|
<< "contrast_weight" << wcon |
|
<< "saturation_weight" << wsat |
|
<< "exposure_weight" << wexp; |
|
} |
|
|
|
void read(const FileNode& fn) |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
wcon = fn["contrast_weight"]; |
|
wsat = fn["saturation_weight"]; |
|
wexp = fn["exposure_weight"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
float wcon, wsat, wexp; |
|
}; |
|
|
|
Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp) |
|
{ |
|
return makePtr<MergeMertensImpl>(wcon, wsat, wexp); |
|
} |
|
|
|
class MergeRobertsonImpl : public MergeRobertson |
|
{ |
|
public: |
|
MergeRobertsonImpl() : |
|
name("MergeRobertson"), |
|
weight(RobertsonWeights()) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response) |
|
{ |
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
Mat times = _times.getMat(); |
|
|
|
CV_Assert(images.size() == times.total()); |
|
checkImageDimensions(images); |
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
int channels = images[0].channels(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
dst.create(images[0].size(), CV_32FCC); |
|
Mat result = dst.getMat(); |
|
|
|
Mat response = input_response.getMat(); |
|
if(response.empty()) { |
|
float middle = LDR_SIZE / 2.0f; |
|
response = linearResponse(channels) / middle; |
|
} |
|
CV_Assert(response.rows == LDR_SIZE && response.cols == 1 && |
|
response.channels() == channels); |
|
|
|
result = Mat::zeros(images[0].size(), CV_32FCC); |
|
Mat wsum = Mat::zeros(images[0].size(), CV_32FCC); |
|
for(size_t i = 0; i < images.size(); i++) { |
|
Mat im, w; |
|
LUT(images[i], weight, w); |
|
LUT(images[i], response, im); |
|
|
|
result += times.at<float>((int)i) * w.mul(im); |
|
wsum += times.at<float>((int)i) * times.at<float>((int)i) * w; |
|
} |
|
result = result.mul(1 / wsum); |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray times) |
|
{ |
|
process(src, dst, times, Mat()); |
|
} |
|
|
|
protected: |
|
String name; |
|
Mat weight; |
|
}; |
|
|
|
Ptr<MergeRobertson> createMergeRobertson() |
|
{ |
|
return makePtr<MergeRobertsonImpl>(); |
|
} |
|
|
|
}
|
|
|