mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1071 lines
33 KiB
1071 lines
33 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
// Classical Hough Transform |
|
struct LinePolar |
|
{ |
|
float rho; |
|
float angle; |
|
}; |
|
|
|
|
|
struct hough_cmp_gt |
|
{ |
|
hough_cmp_gt(const int* _aux) : aux(_aux) {} |
|
bool operator()(int l1, int l2) const |
|
{ |
|
return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2); |
|
} |
|
const int* aux; |
|
}; |
|
|
|
|
|
/* |
|
Here image is an input raster; |
|
step is it's step; size characterizes it's ROI; |
|
rho and theta are discretization steps (in pixels and radians correspondingly). |
|
threshold is the minimum number of pixels in the feature for it |
|
to be a candidate for line. lines is the output |
|
array of (rho, theta) pairs. linesMax is the buffer size (number of pairs). |
|
Functions return the actual number of found lines. |
|
*/ |
|
static void |
|
HoughLinesStandard( const Mat& img, float rho, float theta, |
|
int threshold, std::vector<Vec2f>& lines, int linesMax ) |
|
{ |
|
int i, j; |
|
float irho = 1 / rho; |
|
|
|
CV_Assert( img.type() == CV_8UC1 ); |
|
|
|
const uchar* image = img.data; |
|
int step = (int)img.step; |
|
int width = img.cols; |
|
int height = img.rows; |
|
|
|
int numangle = cvRound(CV_PI / theta); |
|
int numrho = cvRound(((width + height) * 2 + 1) / rho); |
|
|
|
AutoBuffer<int> _accum((numangle+2) * (numrho+2)); |
|
std::vector<int> _sort_buf; |
|
AutoBuffer<float> _tabSin(numangle); |
|
AutoBuffer<float> _tabCos(numangle); |
|
int *accum = _accum; |
|
float *tabSin = _tabSin, *tabCos = _tabCos; |
|
|
|
memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) ); |
|
|
|
float ang = 0; |
|
for(int n = 0; n < numangle; ang += theta, n++ ) |
|
{ |
|
tabSin[n] = (float)(sin((double)ang) * irho); |
|
tabCos[n] = (float)(cos((double)ang) * irho); |
|
} |
|
|
|
// stage 1. fill accumulator |
|
for( i = 0; i < height; i++ ) |
|
for( j = 0; j < width; j++ ) |
|
{ |
|
if( image[i * step + j] != 0 ) |
|
for(int n = 0; n < numangle; n++ ) |
|
{ |
|
int r = cvRound( j * tabCos[n] + i * tabSin[n] ); |
|
r += (numrho - 1) / 2; |
|
accum[(n+1) * (numrho+2) + r+1]++; |
|
} |
|
} |
|
|
|
// stage 2. find local maximums |
|
for(int r = 0; r < numrho; r++ ) |
|
for(int n = 0; n < numangle; n++ ) |
|
{ |
|
int base = (n+1) * (numrho+2) + r+1; |
|
if( accum[base] > threshold && |
|
accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && |
|
accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) |
|
_sort_buf.push_back(base); |
|
} |
|
|
|
// stage 3. sort the detected lines by accumulator value |
|
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum)); |
|
|
|
// stage 4. store the first min(total,linesMax) lines to the output buffer |
|
linesMax = std::min(linesMax, (int)_sort_buf.size()); |
|
double scale = 1./(numrho+2); |
|
for( i = 0; i < linesMax; i++ ) |
|
{ |
|
LinePolar line; |
|
int idx = _sort_buf[i]; |
|
int n = cvFloor(idx*scale) - 1; |
|
int r = idx - (n+1)*(numrho+2) - 1; |
|
line.rho = (r - (numrho - 1)*0.5f) * rho; |
|
line.angle = n * theta; |
|
lines.push_back(Vec2f(line.rho, line.angle)); |
|
} |
|
} |
|
|
|
|
|
// Multi-Scale variant of Classical Hough Transform |
|
|
|
struct hough_index |
|
{ |
|
hough_index() : value(0), rho(0.f), theta(0.f) {} |
|
hough_index(int _val, float _rho, float _theta) |
|
: value(_val), rho(_rho), theta(_theta) {} |
|
|
|
int value; |
|
float rho, theta; |
|
}; |
|
|
|
|
|
static void |
|
HoughLinesSDiv( const Mat& img, |
|
float rho, float theta, int threshold, |
|
int srn, int stn, |
|
std::vector<Vec2f>& lines, int linesMax ) |
|
{ |
|
#define _POINT(row, column)\ |
|
(image_src[(row)*step+(column)]) |
|
|
|
int index, i; |
|
int ri, ti, ti1, ti0; |
|
int row, col; |
|
float r, t; /* Current rho and theta */ |
|
float rv; /* Some temporary rho value */ |
|
|
|
int fn = 0; |
|
float xc, yc; |
|
|
|
const float d2r = (float)(CV_PI / 180); |
|
int sfn = srn * stn; |
|
int fi; |
|
int count; |
|
int cmax = 0; |
|
|
|
std::vector<hough_index> lst; |
|
|
|
CV_Assert( img.type() == CV_8UC1 ); |
|
CV_Assert( linesMax > 0 && rho > 0 && theta > 0 ); |
|
|
|
threshold = MIN( threshold, 255 ); |
|
|
|
const uchar* image_src = img.data; |
|
int step = (int)img.step; |
|
int w = img.cols; |
|
int h = img.rows; |
|
|
|
float irho = 1 / rho; |
|
float itheta = 1 / theta; |
|
float srho = rho / srn; |
|
float stheta = theta / stn; |
|
float isrho = 1 / srho; |
|
float istheta = 1 / stheta; |
|
|
|
int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho ); |
|
int tn = cvFloor( 2 * CV_PI * itheta ); |
|
|
|
lst.push_back(hough_index(threshold, -1.f, 0.f)); |
|
|
|
// Precalculate sin table |
|
std::vector<float> _sinTable( 5 * tn * stn ); |
|
float* sinTable = &_sinTable[0]; |
|
|
|
for( index = 0; index < 5 * tn * stn; index++ ) |
|
sinTable[index] = (float)cos( stheta * index * 0.2f ); |
|
|
|
std::vector<uchar> _caccum(rn * tn, (uchar)0); |
|
uchar* caccum = &_caccum[0]; |
|
|
|
// Counting all feature pixels |
|
for( row = 0; row < h; row++ ) |
|
for( col = 0; col < w; col++ ) |
|
fn += _POINT( row, col ) != 0; |
|
|
|
std::vector<int> _x(fn), _y(fn); |
|
int* x = &_x[0], *y = &_y[0]; |
|
|
|
// Full Hough Transform (it's accumulator update part) |
|
fi = 0; |
|
for( row = 0; row < h; row++ ) |
|
{ |
|
for( col = 0; col < w; col++ ) |
|
{ |
|
if( _POINT( row, col )) |
|
{ |
|
int halftn; |
|
float r0; |
|
float scale_factor; |
|
int iprev = -1; |
|
float phi, phi1; |
|
float theta_it; // Value of theta for iterating |
|
|
|
// Remember the feature point |
|
x[fi] = col; |
|
y[fi] = row; |
|
fi++; |
|
|
|
yc = (float) row + 0.5f; |
|
xc = (float) col + 0.5f; |
|
|
|
/* Update the accumulator */ |
|
t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); |
|
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ); |
|
r0 = r * irho; |
|
ti0 = cvFloor( (t + CV_PI*0.5) * itheta ); |
|
|
|
caccum[ti0]++; |
|
|
|
theta_it = rho / r; |
|
theta_it = theta_it < theta ? theta_it : theta; |
|
scale_factor = theta_it * itheta; |
|
halftn = cvFloor( CV_PI / theta_it ); |
|
for( ti1 = 1, phi = theta_it - (float)(CV_PI*0.5), phi1 = (theta_it + t) * itheta; |
|
ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor ) |
|
{ |
|
rv = r0 * std::cos( phi ); |
|
i = cvFloor( rv ) * tn; |
|
i += cvFloor( phi1 ); |
|
assert( i >= 0 ); |
|
assert( i < rn * tn ); |
|
caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0)); |
|
iprev = i; |
|
if( cmax < caccum[i] ) |
|
cmax = caccum[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Starting additional analysis |
|
count = 0; |
|
for( ri = 0; ri < rn; ri++ ) |
|
{ |
|
for( ti = 0; ti < tn; ti++ ) |
|
{ |
|
if( caccum[ri * tn + ti] > threshold ) |
|
count++; |
|
} |
|
} |
|
|
|
if( count * 100 > rn * tn ) |
|
{ |
|
HoughLinesStandard( img, rho, theta, threshold, lines, linesMax ); |
|
return; |
|
} |
|
|
|
std::vector<uchar> _buffer(srn * stn + 2); |
|
uchar* buffer = &_buffer[0]; |
|
uchar* mcaccum = buffer + 1; |
|
|
|
count = 0; |
|
for( ri = 0; ri < rn; ri++ ) |
|
{ |
|
for( ti = 0; ti < tn; ti++ ) |
|
{ |
|
if( caccum[ri * tn + ti] > threshold ) |
|
{ |
|
count++; |
|
memset( mcaccum, 0, sfn * sizeof( uchar )); |
|
|
|
for( index = 0; index < fn; index++ ) |
|
{ |
|
int ti2; |
|
float r0; |
|
|
|
yc = (float) y[index] + 0.5f; |
|
xc = (float) x[index] + 0.5f; |
|
|
|
// Update the accumulator |
|
t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); |
|
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho; |
|
ti0 = cvFloor( (t + CV_PI * 0.5) * istheta ); |
|
ti2 = (ti * stn - ti0) * 5; |
|
r0 = (float) ri *srn; |
|
|
|
for( ti1 = 0; ti1 < stn; ti1++, ti2 += 5 ) |
|
{ |
|
rv = r * sinTable[(int) (std::abs( ti2 ))] - r0; |
|
i = cvFloor( rv ) * stn + ti1; |
|
|
|
i = CV_IMAX( i, -1 ); |
|
i = CV_IMIN( i, sfn ); |
|
mcaccum[i]++; |
|
assert( i >= -1 ); |
|
assert( i <= sfn ); |
|
} |
|
} |
|
|
|
// Find peaks in maccum... |
|
for( index = 0; index < sfn; index++ ) |
|
{ |
|
i = 0; |
|
int pos = (int)(lst.size() - 1); |
|
if( pos < 0 || lst[pos].value < mcaccum[index] ) |
|
{ |
|
hough_index vi(mcaccum[index], |
|
index / stn * srho + ri * rho, |
|
index % stn * stheta + ti * theta - (float)(CV_PI*0.5)); |
|
lst.push_back(vi); |
|
for( ; pos >= 0; pos-- ) |
|
{ |
|
if( lst[pos].value > vi.value ) |
|
break; |
|
lst[pos+1] = lst[pos]; |
|
} |
|
lst[pos+1] = vi; |
|
if( (int)lst.size() > linesMax ) |
|
lst.pop_back(); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
for( size_t idx = 0; idx < lst.size(); idx++ ) |
|
{ |
|
if( lst[idx].rho < 0 ) |
|
continue; |
|
lines.push_back(Vec2f(lst[idx].rho, lst[idx].theta)); |
|
} |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Probabilistic Hough Transform * |
|
\****************************************************************************************/ |
|
|
|
static void |
|
HoughLinesProbabilistic( Mat& image, |
|
float rho, float theta, int threshold, |
|
int lineLength, int lineGap, |
|
std::vector<Vec4i>& lines, int linesMax ) |
|
{ |
|
Point pt; |
|
float irho = 1 / rho; |
|
RNG rng((uint64)-1); |
|
|
|
CV_Assert( image.type() == CV_8UC1 ); |
|
|
|
int width = image.cols; |
|
int height = image.rows; |
|
|
|
int numangle = cvRound(CV_PI / theta); |
|
int numrho = cvRound(((width + height) * 2 + 1) / rho); |
|
|
|
Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 ); |
|
Mat mask( height, width, CV_8UC1 ); |
|
std::vector<float> trigtab(numangle*2); |
|
|
|
for( int n = 0; n < numangle; n++ ) |
|
{ |
|
trigtab[n*2] = (float)(cos((double)n*theta) * irho); |
|
trigtab[n*2+1] = (float)(sin((double)n*theta) * irho); |
|
} |
|
const float* ttab = &trigtab[0]; |
|
uchar* mdata0 = mask.data; |
|
std::vector<Point> nzloc; |
|
|
|
// stage 1. collect non-zero image points |
|
for( pt.y = 0; pt.y < height; pt.y++ ) |
|
{ |
|
const uchar* data = image.ptr(pt.y); |
|
uchar* mdata = mask.ptr(pt.y); |
|
for( pt.x = 0; pt.x < width; pt.x++ ) |
|
{ |
|
if( data[pt.x] ) |
|
{ |
|
mdata[pt.x] = (uchar)1; |
|
nzloc.push_back(pt); |
|
} |
|
else |
|
mdata[pt.x] = 0; |
|
} |
|
} |
|
|
|
int count = (int)nzloc.size(); |
|
|
|
// stage 2. process all the points in random order |
|
for( ; count > 0; count-- ) |
|
{ |
|
// choose random point out of the remaining ones |
|
int idx = rng.uniform(0, count); |
|
int max_val = threshold-1, max_n = 0; |
|
Point point = nzloc[idx]; |
|
Point line_end[2]; |
|
float a, b; |
|
int* adata = (int*)accum.data; |
|
int i = point.y, j = point.x, k, x0, y0, dx0, dy0, xflag; |
|
int good_line; |
|
const int shift = 16; |
|
|
|
// "remove" it by overriding it with the last element |
|
nzloc[idx] = nzloc[count-1]; |
|
|
|
// check if it has been excluded already (i.e. belongs to some other line) |
|
if( !mdata0[i*width + j] ) |
|
continue; |
|
|
|
// update accumulator, find the most probable line |
|
for( int n = 0; n < numangle; n++, adata += numrho ) |
|
{ |
|
int r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] ); |
|
r += (numrho - 1) / 2; |
|
int val = ++adata[r]; |
|
if( max_val < val ) |
|
{ |
|
max_val = val; |
|
max_n = n; |
|
} |
|
} |
|
|
|
// if it is too "weak" candidate, continue with another point |
|
if( max_val < threshold ) |
|
continue; |
|
|
|
// from the current point walk in each direction |
|
// along the found line and extract the line segment |
|
a = -ttab[max_n*2+1]; |
|
b = ttab[max_n*2]; |
|
x0 = j; |
|
y0 = i; |
|
if( fabs(a) > fabs(b) ) |
|
{ |
|
xflag = 1; |
|
dx0 = a > 0 ? 1 : -1; |
|
dy0 = cvRound( b*(1 << shift)/fabs(a) ); |
|
y0 = (y0 << shift) + (1 << (shift-1)); |
|
} |
|
else |
|
{ |
|
xflag = 0; |
|
dy0 = b > 0 ? 1 : -1; |
|
dx0 = cvRound( a*(1 << shift)/fabs(b) ); |
|
x0 = (x0 << shift) + (1 << (shift-1)); |
|
} |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0; |
|
|
|
if( k > 0 ) |
|
dx = -dx, dy = -dy; |
|
|
|
// walk along the line using fixed-point arithmetics, |
|
// stop at the image border or in case of too big gap |
|
for( ;; x += dx, y += dy ) |
|
{ |
|
uchar* mdata; |
|
int i1, j1; |
|
|
|
if( xflag ) |
|
{ |
|
j1 = x; |
|
i1 = y >> shift; |
|
} |
|
else |
|
{ |
|
j1 = x >> shift; |
|
i1 = y; |
|
} |
|
|
|
if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height ) |
|
break; |
|
|
|
mdata = mdata0 + i1*width + j1; |
|
|
|
// for each non-zero point: |
|
// update line end, |
|
// clear the mask element |
|
// reset the gap |
|
if( *mdata ) |
|
{ |
|
gap = 0; |
|
line_end[k].y = i1; |
|
line_end[k].x = j1; |
|
} |
|
else if( ++gap > lineGap ) |
|
break; |
|
} |
|
} |
|
|
|
good_line = std::abs(line_end[1].x - line_end[0].x) >= lineLength || |
|
std::abs(line_end[1].y - line_end[0].y) >= lineLength; |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
int x = x0, y = y0, dx = dx0, dy = dy0; |
|
|
|
if( k > 0 ) |
|
dx = -dx, dy = -dy; |
|
|
|
// walk along the line using fixed-point arithmetics, |
|
// stop at the image border or in case of too big gap |
|
for( ;; x += dx, y += dy ) |
|
{ |
|
uchar* mdata; |
|
int i1, j1; |
|
|
|
if( xflag ) |
|
{ |
|
j1 = x; |
|
i1 = y >> shift; |
|
} |
|
else |
|
{ |
|
j1 = x >> shift; |
|
i1 = y; |
|
} |
|
|
|
mdata = mdata0 + i1*width + j1; |
|
|
|
// for each non-zero point: |
|
// update line end, |
|
// clear the mask element |
|
// reset the gap |
|
if( *mdata ) |
|
{ |
|
if( good_line ) |
|
{ |
|
adata = (int*)accum.data; |
|
for( int n = 0; n < numangle; n++, adata += numrho ) |
|
{ |
|
int r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] ); |
|
r += (numrho - 1) / 2; |
|
adata[r]--; |
|
} |
|
} |
|
*mdata = 0; |
|
} |
|
|
|
if( i1 == line_end[k].y && j1 == line_end[k].x ) |
|
break; |
|
} |
|
} |
|
|
|
if( good_line ) |
|
{ |
|
Vec4i lr(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y); |
|
lines.push_back(lr); |
|
if( (int)lines.size() >= linesMax ) |
|
return; |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
|
|
void cv::HoughLines( InputArray _image, OutputArray _lines, |
|
double rho, double theta, int threshold, |
|
double srn, double stn ) |
|
{ |
|
Mat image = _image.getMat(); |
|
std::vector<Vec2f> lines; |
|
|
|
if( srn == 0 && stn == 0 ) |
|
HoughLinesStandard(image, (float)rho, (float)theta, threshold, lines, INT_MAX); |
|
else |
|
HoughLinesSDiv(image, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), lines, INT_MAX); |
|
|
|
Mat(lines).copyTo(_lines); |
|
} |
|
|
|
|
|
void cv::HoughLinesP(InputArray _image, OutputArray _lines, |
|
double rho, double theta, int threshold, |
|
double minLineLength, double maxGap ) |
|
{ |
|
Mat image = _image.getMat(); |
|
std::vector<Vec4i> lines; |
|
HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX); |
|
Mat(lines).copyTo(_lines); |
|
} |
|
|
|
|
|
|
|
/* Wrapper function for standard hough transform */ |
|
CV_IMPL CvSeq* |
|
cvHoughLines2( CvArr* src_image, void* lineStorage, int method, |
|
double rho, double theta, int threshold, |
|
double param1, double param2 ) |
|
{ |
|
cv::Mat image = cv::cvarrToMat(src_image); |
|
std::vector<cv::Vec2f> l2; |
|
std::vector<cv::Vec4i> l4; |
|
CvSeq* result = 0; |
|
|
|
CvMat* mat = 0; |
|
CvSeq* lines = 0; |
|
CvSeq lines_header; |
|
CvSeqBlock lines_block; |
|
int lineType, elemSize; |
|
int linesMax = INT_MAX; |
|
int iparam1, iparam2; |
|
|
|
if( !lineStorage ) |
|
CV_Error( CV_StsNullPtr, "NULL destination" ); |
|
|
|
if( rho <= 0 || theta <= 0 || threshold <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "rho, theta and threshold must be positive" ); |
|
|
|
if( method != CV_HOUGH_PROBABILISTIC ) |
|
{ |
|
lineType = CV_32FC2; |
|
elemSize = sizeof(float)*2; |
|
} |
|
else |
|
{ |
|
lineType = CV_32SC4; |
|
elemSize = sizeof(int)*4; |
|
} |
|
|
|
if( CV_IS_STORAGE( lineStorage )) |
|
{ |
|
lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage ); |
|
} |
|
else if( CV_IS_MAT( lineStorage )) |
|
{ |
|
mat = (CvMat*)lineStorage; |
|
|
|
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix should be continuous and have a single row or a single column" ); |
|
|
|
if( CV_MAT_TYPE( mat->type ) != lineType ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix data type is inappropriate, see the manual" ); |
|
|
|
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr, |
|
mat->rows + mat->cols - 1, &lines_header, &lines_block ); |
|
linesMax = lines->total; |
|
cvClearSeq( lines ); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" ); |
|
|
|
iparam1 = cvRound(param1); |
|
iparam2 = cvRound(param2); |
|
|
|
switch( method ) |
|
{ |
|
case CV_HOUGH_STANDARD: |
|
HoughLinesStandard( image, (float)rho, |
|
(float)theta, threshold, l2, linesMax ); |
|
break; |
|
case CV_HOUGH_MULTI_SCALE: |
|
HoughLinesSDiv( image, (float)rho, (float)theta, |
|
threshold, iparam1, iparam2, l2, linesMax ); |
|
break; |
|
case CV_HOUGH_PROBABILISTIC: |
|
HoughLinesProbabilistic( image, (float)rho, (float)theta, |
|
threshold, iparam1, iparam2, l4, linesMax ); |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "Unrecognized method id" ); |
|
} |
|
|
|
int nlines = (int)(l2.size() + l4.size()); |
|
|
|
if( mat ) |
|
{ |
|
if( mat->cols > mat->rows ) |
|
mat->cols = nlines; |
|
else |
|
mat->rows = nlines; |
|
} |
|
|
|
if( nlines ) |
|
{ |
|
cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ? |
|
cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]); |
|
|
|
if( mat ) |
|
{ |
|
cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr); |
|
lx.copyTo(dst); |
|
} |
|
else |
|
{ |
|
cvSeqPushMulti(lines, lx.data, nlines); |
|
} |
|
} |
|
|
|
if( !mat ) |
|
result = lines; |
|
return result; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Circle Detection * |
|
\****************************************************************************************/ |
|
|
|
static void |
|
icvHoughCirclesGradient( CvMat* img, float dp, float min_dist, |
|
int min_radius, int max_radius, |
|
int canny_threshold, int acc_threshold, |
|
CvSeq* circles, int circles_max ) |
|
{ |
|
const int SHIFT = 10, ONE = 1 << SHIFT; |
|
cv::Ptr<CvMat> dx, dy; |
|
cv::Ptr<CvMat> edges, accum, dist_buf; |
|
std::vector<int> sort_buf; |
|
cv::Ptr<CvMemStorage> storage; |
|
|
|
int x, y, i, j, k, center_count, nz_count; |
|
float min_radius2 = (float)min_radius*min_radius; |
|
float max_radius2 = (float)max_radius*max_radius; |
|
int rows, cols, arows, acols; |
|
int astep, *adata; |
|
float* ddata; |
|
CvSeq *nz, *centers; |
|
float idp, dr; |
|
CvSeqReader reader; |
|
|
|
edges.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 )); |
|
cvCanny( img, edges, MAX(canny_threshold/2,1), canny_threshold, 3 ); |
|
|
|
dx.reset(cvCreateMat( img->rows, img->cols, CV_16SC1 )); |
|
dy.reset(cvCreateMat( img->rows, img->cols, CV_16SC1 )); |
|
cvSobel( img, dx, 1, 0, 3 ); |
|
cvSobel( img, dy, 0, 1, 3 ); |
|
|
|
if( dp < 1.f ) |
|
dp = 1.f; |
|
idp = 1.f/dp; |
|
accum.reset(cvCreateMat( cvCeil(img->rows*idp)+2, cvCeil(img->cols*idp)+2, CV_32SC1 )); |
|
cvZero(accum); |
|
|
|
storage.reset(cvCreateMemStorage()); |
|
nz = cvCreateSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage ); |
|
centers = cvCreateSeq( CV_32SC1, sizeof(CvSeq), sizeof(int), storage ); |
|
|
|
rows = img->rows; |
|
cols = img->cols; |
|
arows = accum->rows - 2; |
|
acols = accum->cols - 2; |
|
adata = accum->data.i; |
|
astep = accum->step/sizeof(adata[0]); |
|
// Accumulate circle evidence for each edge pixel |
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
const uchar* edges_row = edges->data.ptr + y*edges->step; |
|
const short* dx_row = (const short*)(dx->data.ptr + y*dx->step); |
|
const short* dy_row = (const short*)(dy->data.ptr + y*dy->step); |
|
|
|
for( x = 0; x < cols; x++ ) |
|
{ |
|
float vx, vy; |
|
int sx, sy, x0, y0, x1, y1, r; |
|
CvPoint pt; |
|
|
|
vx = dx_row[x]; |
|
vy = dy_row[x]; |
|
|
|
if( !edges_row[x] || (vx == 0 && vy == 0) ) |
|
continue; |
|
|
|
float mag = std::sqrt(vx*vx+vy*vy); |
|
assert( mag >= 1 ); |
|
sx = cvRound((vx*idp)*ONE/mag); |
|
sy = cvRound((vy*idp)*ONE/mag); |
|
|
|
x0 = cvRound((x*idp)*ONE); |
|
y0 = cvRound((y*idp)*ONE); |
|
// Step from min_radius to max_radius in both directions of the gradient |
|
for(int k1 = 0; k1 < 2; k1++ ) |
|
{ |
|
x1 = x0 + min_radius * sx; |
|
y1 = y0 + min_radius * sy; |
|
|
|
for( r = min_radius; r <= max_radius; x1 += sx, y1 += sy, r++ ) |
|
{ |
|
int x2 = x1 >> SHIFT, y2 = y1 >> SHIFT; |
|
if( (unsigned)x2 >= (unsigned)acols || |
|
(unsigned)y2 >= (unsigned)arows ) |
|
break; |
|
adata[y2*astep + x2]++; |
|
} |
|
|
|
sx = -sx; sy = -sy; |
|
} |
|
|
|
pt.x = x; pt.y = y; |
|
cvSeqPush( nz, &pt ); |
|
} |
|
} |
|
|
|
nz_count = nz->total; |
|
if( !nz_count ) |
|
return; |
|
//Find possible circle centers |
|
for( y = 1; y < arows - 1; y++ ) |
|
{ |
|
for( x = 1; x < acols - 1; x++ ) |
|
{ |
|
int base = y*(acols+2) + x; |
|
if( adata[base] > acc_threshold && |
|
adata[base] > adata[base-1] && adata[base] > adata[base+1] && |
|
adata[base] > adata[base-acols-2] && adata[base] > adata[base+acols+2] ) |
|
cvSeqPush(centers, &base); |
|
} |
|
} |
|
|
|
center_count = centers->total; |
|
if( !center_count ) |
|
return; |
|
|
|
sort_buf.resize( MAX(center_count,nz_count) ); |
|
cvCvtSeqToArray( centers, &sort_buf[0] ); |
|
|
|
std::sort(sort_buf.begin(), sort_buf.begin() + center_count, cv::hough_cmp_gt(adata)); |
|
cvClearSeq( centers ); |
|
cvSeqPushMulti( centers, &sort_buf[0], center_count ); |
|
|
|
dist_buf.reset(cvCreateMat( 1, nz_count, CV_32FC1 )); |
|
ddata = dist_buf->data.fl; |
|
|
|
dr = dp; |
|
min_dist = MAX( min_dist, dp ); |
|
min_dist *= min_dist; |
|
// For each found possible center |
|
// Estimate radius and check support |
|
for( i = 0; i < centers->total; i++ ) |
|
{ |
|
int ofs = *(int*)cvGetSeqElem( centers, i ); |
|
y = ofs/(acols+2); |
|
x = ofs - (y)*(acols+2); |
|
//Calculate circle's center in pixels |
|
float cx = (float)((x + 0.5f)*dp), cy = (float)(( y + 0.5f )*dp); |
|
float start_dist, dist_sum; |
|
float r_best = 0; |
|
int max_count = 0; |
|
// Check distance with previously detected circles |
|
for( j = 0; j < circles->total; j++ ) |
|
{ |
|
float* c = (float*)cvGetSeqElem( circles, j ); |
|
if( (c[0] - cx)*(c[0] - cx) + (c[1] - cy)*(c[1] - cy) < min_dist ) |
|
break; |
|
} |
|
|
|
if( j < circles->total ) |
|
continue; |
|
// Estimate best radius |
|
cvStartReadSeq( nz, &reader ); |
|
for( j = k = 0; j < nz_count; j++ ) |
|
{ |
|
CvPoint pt; |
|
float _dx, _dy, _r2; |
|
CV_READ_SEQ_ELEM( pt, reader ); |
|
_dx = cx - pt.x; _dy = cy - pt.y; |
|
_r2 = _dx*_dx + _dy*_dy; |
|
if(min_radius2 <= _r2 && _r2 <= max_radius2 ) |
|
{ |
|
ddata[k] = _r2; |
|
sort_buf[k] = k; |
|
k++; |
|
} |
|
} |
|
|
|
int nz_count1 = k, start_idx = nz_count1 - 1; |
|
if( nz_count1 == 0 ) |
|
continue; |
|
dist_buf->cols = nz_count1; |
|
cvPow( dist_buf, dist_buf, 0.5 ); |
|
std::sort(sort_buf.begin(), sort_buf.begin() + nz_count1, cv::hough_cmp_gt((int*)ddata)); |
|
|
|
dist_sum = start_dist = ddata[sort_buf[nz_count1-1]]; |
|
for( j = nz_count1 - 2; j >= 0; j-- ) |
|
{ |
|
float d = ddata[sort_buf[j]]; |
|
|
|
if( d > max_radius ) |
|
break; |
|
|
|
if( d - start_dist > dr ) |
|
{ |
|
float r_cur = ddata[sort_buf[(j + start_idx)/2]]; |
|
if( (start_idx - j)*r_best >= max_count*r_cur || |
|
(r_best < FLT_EPSILON && start_idx - j >= max_count) ) |
|
{ |
|
r_best = r_cur; |
|
max_count = start_idx - j; |
|
} |
|
start_dist = d; |
|
start_idx = j; |
|
dist_sum = 0; |
|
} |
|
dist_sum += d; |
|
} |
|
// Check if the circle has enough support |
|
if( max_count > acc_threshold ) |
|
{ |
|
float c[3]; |
|
c[0] = cx; |
|
c[1] = cy; |
|
c[2] = (float)r_best; |
|
cvSeqPush( circles, c ); |
|
if( circles->total > circles_max ) |
|
return; |
|
} |
|
} |
|
} |
|
|
|
CV_IMPL CvSeq* |
|
cvHoughCircles( CvArr* src_image, void* circle_storage, |
|
int method, double dp, double min_dist, |
|
double param1, double param2, |
|
int min_radius, int max_radius ) |
|
{ |
|
CvSeq* result = 0; |
|
|
|
CvMat stub, *img = (CvMat*)src_image; |
|
CvMat* mat = 0; |
|
CvSeq* circles = 0; |
|
CvSeq circles_header; |
|
CvSeqBlock circles_block; |
|
int circles_max = INT_MAX; |
|
int canny_threshold = cvRound(param1); |
|
int acc_threshold = cvRound(param2); |
|
|
|
img = cvGetMat( img, &stub ); |
|
|
|
if( !CV_IS_MASK_ARR(img)) |
|
CV_Error( CV_StsBadArg, "The source image must be 8-bit, single-channel" ); |
|
|
|
if( !circle_storage ) |
|
CV_Error( CV_StsNullPtr, "NULL destination" ); |
|
|
|
if( dp <= 0 || min_dist <= 0 || canny_threshold <= 0 || acc_threshold <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "dp, min_dist, canny_threshold and acc_threshold must be all positive numbers" ); |
|
|
|
min_radius = MAX( min_radius, 0 ); |
|
if( max_radius <= 0 ) |
|
max_radius = MAX( img->rows, img->cols ); |
|
else if( max_radius <= min_radius ) |
|
max_radius = min_radius + 2; |
|
|
|
if( CV_IS_STORAGE( circle_storage )) |
|
{ |
|
circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq), |
|
sizeof(float)*3, (CvMemStorage*)circle_storage ); |
|
} |
|
else if( CV_IS_MAT( circle_storage )) |
|
{ |
|
mat = (CvMat*)circle_storage; |
|
|
|
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) || |
|
CV_MAT_TYPE(mat->type) != CV_32FC3 ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix should be continuous and have a single row or a single column" ); |
|
|
|
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, |
|
mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block ); |
|
circles_max = circles->total; |
|
cvClearSeq( circles ); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" ); |
|
|
|
switch( method ) |
|
{ |
|
case CV_HOUGH_GRADIENT: |
|
icvHoughCirclesGradient( img, (float)dp, (float)min_dist, |
|
min_radius, max_radius, canny_threshold, |
|
acc_threshold, circles, circles_max ); |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "Unrecognized method id" ); |
|
} |
|
|
|
if( mat ) |
|
{ |
|
if( mat->cols > mat->rows ) |
|
mat->cols = circles->total; |
|
else |
|
mat->rows = circles->total; |
|
} |
|
else |
|
result = circles; |
|
|
|
return result; |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
const int STORAGE_SIZE = 1 << 12; |
|
|
|
static void seqToMat(const CvSeq* seq, OutputArray _arr) |
|
{ |
|
if( seq && seq->total > 0 ) |
|
{ |
|
_arr.create(1, seq->total, seq->flags, -1, true); |
|
Mat arr = _arr.getMat(); |
|
cvCvtSeqToArray(seq, arr.data); |
|
} |
|
else |
|
_arr.release(); |
|
} |
|
|
|
} |
|
|
|
void cv::HoughCircles( InputArray _image, OutputArray _circles, |
|
int method, double dp, double min_dist, |
|
double param1, double param2, |
|
int minRadius, int maxRadius ) |
|
{ |
|
Ptr<CvMemStorage> storage(cvCreateMemStorage(STORAGE_SIZE)); |
|
Mat image = _image.getMat(); |
|
CvMat c_image = image; |
|
CvSeq* seq = cvHoughCircles( &c_image, storage, method, |
|
dp, min_dist, param1, param2, minRadius, maxRadius ); |
|
seqToMat(seq, _circles); |
|
} |
|
|
|
/* End of file. */
|
|
|