Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

649 lines
21 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8)
# pragma GCC diagnostic ignored "-Warray-bounds"
#endif
namespace cv
{
struct FFillSegment
{
ushort y;
ushort l;
ushort r;
ushort prevl;
ushort prevr;
short dir;
};
enum
{
UP = 1,
DOWN = -1
};
#define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR ) \
{ \
tail->y = (ushort)(Y); \
tail->l = (ushort)(L); \
tail->r = (ushort)(R); \
tail->prevl = (ushort)(PREV_L); \
tail->prevr = (ushort)(PREV_R); \
tail->dir = (short)(DIR); \
if( ++tail == buffer_end ) \
{ \
buffer->resize(buffer->size() * 3/2); \
tail = &buffer->front() + (tail - head); \
head = &buffer->front(); \
buffer_end = head + buffer->size(); \
} \
}
#define ICV_POP( Y, L, R, PREV_L, PREV_R, DIR ) \
{ \
--tail; \
Y = tail->y; \
L = tail->l; \
R = tail->r; \
PREV_L = tail->prevl; \
PREV_R = tail->prevr; \
DIR = tail->dir; \
}
struct ConnectedComp
{
ConnectedComp();
Rect rect;
Point pt;
int threshold;
int label;
int area;
int harea;
int carea;
int perimeter;
int nholes;
int ninflections;
double mx;
double my;
Scalar avg;
Scalar sdv;
};
ConnectedComp::ConnectedComp()
{
rect = Rect(0, 0, 0, 0);
pt = Point(-1, -1);
threshold = -1;
label = -1;
area = harea = carea = perimeter = nholes = ninflections = 0;
mx = my = 0;
avg = sdv = Scalar::all(0);
}
// Simple Floodfill (repainting single-color connected component)
template<typename _Tp>
static void
floodFill_CnIR( Mat& image, Point seed,
_Tp newVal, ConnectedComp* region, int flags,
std::vector<FFillSegment>* buffer )
{
_Tp* img = (_Tp*)(image.data + image.step * seed.y);
Size roi = image.size();
int i, L, R;
int area = 0;
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = XMin = XMax = seed.x;
_Tp val0 = img[L];
img[L] = newVal;
while( ++R < roi.width && img[R] == val0 )
img[R] = newVal;
while( --L >= 0 && img[L] == val0 )
img[L] = newVal;
XMax = --R;
XMin = ++L;
ICV_PUSH( seed.y, L, R, R + 1, R, UP );
while( head != tail )
{
int k, YC, PL, PR, dir;
ICV_POP( YC, L, R, PL, PR, dir );
int data[][3] =
{
{-dir, L - _8_connectivity, R + _8_connectivity},
{dir, L - _8_connectivity, PL - 1},
{dir, PR + 1, R + _8_connectivity}
};
if( region )
{
area += R - L + 1;
if( XMax < R ) XMax = R;
if( XMin > L ) XMin = L;
if( YMax < YC ) YMax = YC;
if( YMin > YC ) YMin = YC;
}
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
img = (_Tp*)(image.data + (YC + dir) * image.step);
int left = data[k][1];
int right = data[k][2];
if( (unsigned)(YC + dir) >= (unsigned)roi.height )
continue;
for( i = left; i <= right; i++ )
{
if( (unsigned)i < (unsigned)roi.width && img[i] == val0 )
{
int j = i;
img[i] = newVal;
while( --j >= 0 && img[j] == val0 )
img[j] = newVal;
while( ++i < roi.width && img[i] == val0 )
img[i] = newVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
}
if( region )
{
region->pt = seed;
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
}
}
/****************************************************************************************\
* Gradient Floodfill *
\****************************************************************************************/
struct Diff8uC1
{
Diff8uC1(uchar _lo, uchar _up) : lo(_lo), interval(_lo + _up) {}
bool operator()(const uchar* a, const uchar* b) const
{ return (unsigned)(a[0] - b[0] + lo) <= interval; }
unsigned lo, interval;
};
struct Diff8uC3
{
Diff8uC3(Vec3b _lo, Vec3b _up)
{
for( int k = 0; k < 3; k++ )
lo[k] = _lo[k], interval[k] = _lo[k] + _up[k];
}
bool operator()(const Vec3b* a, const Vec3b* b) const
{
return (unsigned)(a[0][0] - b[0][0] + lo[0]) <= interval[0] &&
(unsigned)(a[0][1] - b[0][1] + lo[1]) <= interval[1] &&
(unsigned)(a[0][2] - b[0][2] + lo[2]) <= interval[2];
}
unsigned lo[3], interval[3];
};
template<typename _Tp>
struct DiffC1
{
DiffC1(_Tp _lo, _Tp _up) : lo(-_lo), up(_up) {}
bool operator()(const _Tp* a, const _Tp* b) const
{
_Tp d = a[0] - b[0];
return lo <= d && d <= up;
}
_Tp lo, up;
};
template<typename _Tp>
struct DiffC3
{
DiffC3(_Tp _lo, _Tp _up) : lo(-_lo), up(_up) {}
bool operator()(const _Tp* a, const _Tp* b) const
{
_Tp d = *a - *b;
return lo[0] <= d[0] && d[0] <= up[0] &&
lo[1] <= d[1] && d[1] <= up[1] &&
lo[2] <= d[2] && d[2] <= up[2];
}
_Tp lo, up;
};
typedef DiffC1<int> Diff32sC1;
typedef DiffC3<Vec3i> Diff32sC3;
typedef DiffC1<float> Diff32fC1;
typedef DiffC3<Vec3f> Diff32fC3;
template<typename _Tp, typename _MTp, typename _WTp, class Diff>
static void
floodFillGrad_CnIR( Mat& image, Mat& msk,
Point seed, _Tp newVal, _MTp newMaskVal,
Diff diff, ConnectedComp* region, int flags,
std::vector<FFillSegment>* buffer )
{
int step = (int)image.step, maskStep = (int)msk.step;
uchar* pImage = image.data;
_Tp* img = (_Tp*)(pImage + step*seed.y);
uchar* pMask = msk.data + maskStep + sizeof(_MTp);
_MTp* mask = (_MTp*)(pMask + maskStep*seed.y);
int i, L, R;
int area = 0;
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
int fixedRange = flags & FLOODFILL_FIXED_RANGE;
int fillImage = (flags & FLOODFILL_MASK_ONLY) == 0;
FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = seed.x;
if( mask[L] )
return;
mask[L] = newMaskVal;
_Tp val0 = img[L];
if( fixedRange )
{
while( !mask[R + 1] && diff( img + (R+1), &val0 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && diff( img + (L-1), &val0 ))
mask[--L] = newMaskVal;
}
else
{
while( !mask[R + 1] && diff( img + (R+1), img + R ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && diff( img + (L-1), img + L ))
mask[--L] = newMaskVal;
}
XMax = R;
XMin = L;
ICV_PUSH( seed.y, L, R, R + 1, R, UP );
while( head != tail )
{
int k, YC, PL, PR, dir;
ICV_POP( YC, L, R, PL, PR, dir );
int data[][3] =
{
{-dir, L - _8_connectivity, R + _8_connectivity},
{dir, L - _8_connectivity, PL - 1},
{dir, PR + 1, R + _8_connectivity}
};
unsigned length = (unsigned)(R-L);
if( region )
{
area += (int)length + 1;
if( XMax < R ) XMax = R;
if( XMin > L ) XMin = L;
if( YMax < YC ) YMax = YC;
if( YMin > YC ) YMin = YC;
}
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
img = (_Tp*)(pImage + (YC + dir) * step);
_Tp* img1 = (_Tp*)(pImage + YC * step);
mask = (_MTp*)(pMask + (YC + dir) * maskStep);
int left = data[k][1];
int right = data[k][2];
if( fixedRange )
for( i = left; i <= right; i++ )
{
if( !mask[i] && diff( img + i, &val0 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && diff( img + j, &val0 ))
mask[j] = newMaskVal;
while( !mask[++i] && diff( img + i, &val0 ))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else if( !_8_connectivity )
for( i = left; i <= right; i++ )
{
if( !mask[i] && diff( img + i, img1 + i ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && diff( img + j, img + (j+1) ))
mask[j] = newMaskVal;
while( !mask[++i] &&
(diff( img + i, img + (i-1) ) ||
(diff( img + i, img1 + i) && i <= R)))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
int idx;
_Tp val;
if( !mask[i] &&
(((val = img[i],
(unsigned)(idx = i-L-1) <= length) &&
diff( &val, img1 + (i-1))) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + i )) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + (i+1) ))))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && diff( img + j, img + (j+1) ))
mask[j] = newMaskVal;
while( !mask[++i] &&
((val = img[i],
diff( &val, img + (i-1) )) ||
(((unsigned)(idx = i-L-1) <= length &&
diff( &val, img1 + (i-1) ))) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + i )) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + (i+1) ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
img = (_Tp*)(pImage + YC * step);
if( fillImage )
for( i = L; i <= R; i++ )
img[i] = newVal;
/*else if( region )
for( i = L; i <= R; i++ )
sum += img[i];*/
}
if( region )
{
region->pt = seed;
region->label = saturate_cast<int>(newMaskVal);
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
}
}
}
/****************************************************************************************\
* External Functions *
\****************************************************************************************/
int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
Point seedPoint, Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
{
ConnectedComp comp;
std::vector<FFillSegment> buffer;
if( rect )
*rect = Rect();
int i, connectivity = flags & 255;
union {
uchar b[4];
int i[4];
float f[4];
double _[4];
} nv_buf;
nv_buf._[0] = nv_buf._[1] = nv_buf._[2] = nv_buf._[3] = 0;
struct { Vec3b b; Vec3i i; Vec3f f; } ld_buf, ud_buf;
Mat img = _image.getMat(), mask;
if( !_mask.empty() )
mask = _mask.getMat();
Size size = img.size();
int type = img.type();
int depth = img.depth();
int cn = img.channels();
if( connectivity == 0 )
connectivity = 4;
else if( connectivity != 4 && connectivity != 8 )
CV_Error( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
bool is_simple = mask.empty() && (flags & FLOODFILL_MASK_ONLY) == 0;
for( i = 0; i < cn; i++ )
{
if( loDiff[i] < 0 || upDiff[i] < 0 )
CV_Error( CV_StsBadArg, "lo_diff and up_diff must be non-negative" );
is_simple = is_simple && fabs(loDiff[i]) < DBL_EPSILON && fabs(upDiff[i]) < DBL_EPSILON;
}
if( (unsigned)seedPoint.x >= (unsigned)size.width ||
(unsigned)seedPoint.y >= (unsigned)size.height )
CV_Error( CV_StsOutOfRange, "Seed point is outside of image" );
scalarToRawData( newVal, &nv_buf, type, 0);
size_t buffer_size = MAX( size.width, size.height ) * 2;
buffer.resize( buffer_size );
if( is_simple )
{
size_t elem_size = img.elemSize();
const uchar* seed_ptr = img.data + img.step*seedPoint.y + elem_size*seedPoint.x;
size_t k = 0;
for(; k < elem_size; k++)
if (seed_ptr[k] != nv_buf.b[k])
break;
if( k != elem_size )
{
if( type == CV_8UC1 )
floodFill_CnIR(img, seedPoint, nv_buf.b[0], &comp, flags, &buffer);
else if( type == CV_8UC3 )
floodFill_CnIR(img, seedPoint, Vec3b(nv_buf.b), &comp, flags, &buffer);
else if( type == CV_32SC1 )
floodFill_CnIR(img, seedPoint, nv_buf.i[0], &comp, flags, &buffer);
else if( type == CV_32FC1 )
floodFill_CnIR(img, seedPoint, nv_buf.f[0], &comp, flags, &buffer);
else if( type == CV_32SC3 )
floodFill_CnIR(img, seedPoint, Vec3i(nv_buf.i), &comp, flags, &buffer);
else if( type == CV_32FC3 )
floodFill_CnIR(img, seedPoint, Vec3f(nv_buf.f), &comp, flags, &buffer);
else
CV_Error( CV_StsUnsupportedFormat, "" );
if( rect )
*rect = comp.rect;
return comp.area;
}
}
if( mask.empty() )
{
Mat tempMask( size.height + 2, size.width + 2, CV_8UC1 );
tempMask.setTo(Scalar::all(0));
mask = tempMask;
}
else
{
CV_Assert( mask.rows == size.height+2 && mask.cols == size.width+2 );
CV_Assert( mask.type() == CV_8U );
}
memset( mask.data, 1, mask.cols );
memset( mask.data + mask.step*(mask.rows-1), 1, mask.cols );
for( i = 1; i <= size.height; i++ )
{
mask.at<uchar>(i, 0) = mask.at<uchar>(i, mask.cols-1) = (uchar)1;
}
if( depth == CV_8U )
for( i = 0; i < cn; i++ )
{
ld_buf.b[i] = saturate_cast<uchar>(cvFloor(loDiff[i]));
ud_buf.b[i] = saturate_cast<uchar>(cvFloor(upDiff[i]));
}
else if( depth == CV_32S )
for( i = 0; i < cn; i++ )
{
ld_buf.i[i] = cvFloor(loDiff[i]);
ud_buf.i[i] = cvFloor(upDiff[i]);
}
else if( depth == CV_32F )
for( i = 0; i < cn; i++ )
{
ld_buf.f[i] = (float)loDiff[i];
ud_buf.f[i] = (float)upDiff[i];
}
else
CV_Error( CV_StsUnsupportedFormat, "" );
uchar newMaskVal = (uchar)((flags & ~0xff) == 0 ? 1 : ((flags >> 8) & 255));
if( type == CV_8UC1 )
floodFillGrad_CnIR<uchar, uchar, int, Diff8uC1>(
img, mask, seedPoint, nv_buf.b[0], newMaskVal,
Diff8uC1(ld_buf.b[0], ud_buf.b[0]),
&comp, flags, &buffer);
else if( type == CV_8UC3 )
floodFillGrad_CnIR<Vec3b, uchar, Vec3i, Diff8uC3>(
img, mask, seedPoint, Vec3b(nv_buf.b), newMaskVal,
Diff8uC3(ld_buf.b, ud_buf.b),
&comp, flags, &buffer);
else if( type == CV_32SC1 )
floodFillGrad_CnIR<int, uchar, int, Diff32sC1>(
img, mask, seedPoint, nv_buf.i[0], newMaskVal,
Diff32sC1(ld_buf.i[0], ud_buf.i[0]),
&comp, flags, &buffer);
else if( type == CV_32SC3 )
floodFillGrad_CnIR<Vec3i, uchar, Vec3i, Diff32sC3>(
img, mask, seedPoint, Vec3i(nv_buf.i), newMaskVal,
Diff32sC3(ld_buf.i, ud_buf.i),
&comp, flags, &buffer);
else if( type == CV_32FC1 )
floodFillGrad_CnIR<float, uchar, float, Diff32fC1>(
img, mask, seedPoint, nv_buf.f[0], newMaskVal,
Diff32fC1(ld_buf.f[0], ud_buf.f[0]),
&comp, flags, &buffer);
else if( type == CV_32FC3 )
floodFillGrad_CnIR<Vec3f, uchar, Vec3f, Diff32fC3>(
img, mask, seedPoint, Vec3f(nv_buf.f), newMaskVal,
Diff32fC3(ld_buf.f, ud_buf.f),
&comp, flags, &buffer);
else
CV_Error(CV_StsUnsupportedFormat, "");
if( rect )
*rect = comp.rect;
return comp.area;
}
int cv::floodFill( InputOutputArray _image, Point seedPoint,
Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
{
return floodFill(_image, Mat(), seedPoint, newVal, rect, loDiff, upDiff, flags);
}
CV_IMPL void
cvFloodFill( CvArr* arr, CvPoint seed_point,
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
CvConnectedComp* comp, int flags, CvArr* maskarr )
{
if( comp )
memset( comp, 0, sizeof(*comp) );
cv::Mat img = cv::cvarrToMat(arr), mask = cv::cvarrToMat(maskarr);
int area = cv::floodFill(img, mask, seed_point, newVal,
comp ? (cv::Rect*)&comp->rect : 0,
lo_diff, up_diff, flags );
if( comp )
{
comp->area = area;
comp->value = newVal;
}
}
/* End of file. */