Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
578 lines
20 KiB
578 lines
20 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <precomp.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); } |
|
|
|
cv::gpu::SCascade::~SCascade() { throw_nogpu(); } |
|
|
|
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;} |
|
|
|
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); } |
|
|
|
void cv::gpu::SCascade::genRoi(InputArray, OutputArray, Stream&) const { throw_nogpu(); } |
|
|
|
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); } |
|
|
|
#else |
|
|
|
#include <icf.hpp> |
|
|
|
cv::gpu::device::icf::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h) |
|
: octave(idx), step(oct.stages), relScale(scale / oct.scale) |
|
{ |
|
workRect.x = round(w / (float)oct.shrinkage); |
|
workRect.y = round(h / (float)oct.shrinkage); |
|
|
|
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale); |
|
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale); |
|
|
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers |
|
if (fabs(relScale - 1.f) < FLT_EPSILON) |
|
scaling[0] = scaling[1] = 1.f; |
|
else |
|
{ |
|
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2)) : 1.f; |
|
scaling[1] = relScale * relScale; |
|
} |
|
} |
|
|
|
namespace cv { namespace gpu { namespace device { |
|
|
|
namespace icf { |
|
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle, |
|
const int fw, const int fh, const int bins, cudaStream_t stream); |
|
|
|
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections); |
|
} |
|
|
|
namespace imgproc { |
|
void shfl_integral_gpu_buffered(PtrStepSzb, PtrStepSz<uint4>, PtrStepSz<unsigned int>, int, cudaStream_t); |
|
|
|
template <typename T> |
|
void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, |
|
PtrStepSzb dst, int interpolation, cudaStream_t stream); |
|
} |
|
|
|
}}} |
|
|
|
struct cv::gpu::SCascade::Fields |
|
{ |
|
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals) |
|
{ |
|
static const char *const SC_STAGE_TYPE = "stageType"; |
|
static const char *const SC_BOOST = "BOOST"; |
|
|
|
static const char *const SC_FEATURE_TYPE = "featureType"; |
|
static const char *const SC_ICF = "ICF"; |
|
|
|
// only Ada Boost supported |
|
std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; |
|
CV_Assert(stageTypeStr == SC_BOOST); |
|
|
|
// only HOG-like integral channel features cupported |
|
string featureTypeStr = (string)root[SC_FEATURE_TYPE]; |
|
CV_Assert(featureTypeStr == SC_ICF); |
|
|
|
static const char *const SC_ORIG_W = "width"; |
|
static const char *const SC_ORIG_H = "height"; |
|
|
|
int origWidth = (int)root[SC_ORIG_W]; |
|
int origHeight = (int)root[SC_ORIG_H]; |
|
|
|
static const char *const SC_OCTAVES = "octaves"; |
|
static const char *const SC_STAGES = "stages"; |
|
static const char *const SC_FEATURES = "features"; |
|
|
|
static const char *const SC_WEEK = "weakClassifiers"; |
|
static const char *const SC_INTERNAL = "internalNodes"; |
|
static const char *const SC_LEAF = "leafValues"; |
|
|
|
static const char *const SC_OCT_SCALE = "scale"; |
|
static const char *const SC_OCT_STAGES = "stageNum"; |
|
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor"; |
|
|
|
static const char *const SC_STAGE_THRESHOLD = "stageThreshold"; |
|
|
|
static const char * const SC_F_CHANNEL = "channel"; |
|
static const char * const SC_F_RECT = "rect"; |
|
|
|
FileNode fn = root[SC_OCTAVES]; |
|
if (fn.empty()) return false; |
|
|
|
using namespace device::icf; |
|
|
|
std::vector<Octave> voctaves; |
|
std::vector<float> vstages; |
|
std::vector<Node> vnodes; |
|
std::vector<float> vleaves; |
|
|
|
FileNodeIterator it = fn.begin(), it_end = fn.end(); |
|
int feature_offset = 0; |
|
ushort octIndex = 0; |
|
ushort shrinkage = 1; |
|
|
|
for (; it != it_end; ++it) |
|
{ |
|
FileNode fns = *it; |
|
float scale = (float)fns[SC_OCT_SCALE]; |
|
|
|
bool isUPOctave = scale >= 1; |
|
|
|
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]); |
|
ushort2 size; |
|
size.x = cvRound(origWidth * scale); |
|
size.y = cvRound(origHeight * scale); |
|
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]); |
|
|
|
Octave octave(octIndex, nstages, shrinkage, size, scale); |
|
CV_Assert(octave.stages > 0); |
|
voctaves.push_back(octave); |
|
|
|
FileNode ffs = fns[SC_FEATURES]; |
|
if (ffs.empty()) return false; |
|
|
|
FileNodeIterator ftrs = ffs.begin(); |
|
|
|
fns = fns[SC_STAGES]; |
|
if (fn.empty()) return false; |
|
|
|
// for each stage (~ decision tree with H = 2) |
|
FileNodeIterator st = fns.begin(), st_end = fns.end(); |
|
for (; st != st_end; ++st ) |
|
{ |
|
fns = *st; |
|
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]); |
|
|
|
fns = fns[SC_WEEK]; |
|
FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); |
|
for (; ftr != ft_end; ++ftr) |
|
{ |
|
fns = (*ftr)[SC_INTERNAL]; |
|
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); |
|
for (; inIt != inIt_end;) |
|
{ |
|
// int feature = (int)(*(inIt +=2)) + feature_offset; |
|
inIt +=3; |
|
// extract feature, Todo:check it |
|
uint th = saturate_cast<uint>((float)(*(inIt++))); |
|
cv::FileNode ftn = (*ftrs)[SC_F_RECT]; |
|
cv::FileNodeIterator r_it = ftn.begin(); |
|
uchar4 rect; |
|
rect.x = saturate_cast<uchar>((int)*(r_it++)); |
|
rect.y = saturate_cast<uchar>((int)*(r_it++)); |
|
rect.z = saturate_cast<uchar>((int)*(r_it++)); |
|
rect.w = saturate_cast<uchar>((int)*(r_it++)); |
|
|
|
if (isUPOctave) |
|
{ |
|
rect.z -= rect.x; |
|
rect.w -= rect.y; |
|
} |
|
|
|
uint channel = saturate_cast<uint>((int)(*ftrs)[SC_F_CHANNEL]); |
|
vnodes.push_back(Node(rect, channel, th)); |
|
++ftrs; |
|
} |
|
|
|
fns = (*ftr)[SC_LEAF]; |
|
inIt = fns.begin(), inIt_end = fns.end(); |
|
for (; inIt != inIt_end; ++inIt) |
|
vleaves.push_back((float)(*inIt)); |
|
} |
|
} |
|
|
|
feature_offset += octave.stages * 3; |
|
++octIndex; |
|
} |
|
|
|
cv::Mat hoctaves(1, voctaves.size() * sizeof(Octave), CV_8UC1, (uchar*)&(voctaves[0])); |
|
CV_Assert(!hoctaves.empty()); |
|
|
|
cv::Mat hstages(cv::Mat(vstages).reshape(1,1)); |
|
CV_Assert(!hstages.empty()); |
|
|
|
cv::Mat hnodes(1, vnodes.size() * sizeof(Node), CV_8UC1, (uchar*)&(vnodes[0]) ); |
|
CV_Assert(!hnodes.empty()); |
|
|
|
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1)); |
|
CV_Assert(!hleaves.empty()); |
|
|
|
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0, |
|
hoctaves, hstages, hnodes, hleaves); |
|
fields->voctaves = voctaves; |
|
fields->createLevels(FRAME_HEIGHT, FRAME_WIDTH); |
|
|
|
return fields; |
|
} |
|
|
|
bool check(float mins,float maxs, int scales) |
|
{ |
|
bool updated = (minScale == mins) || (maxScale == maxs) || (totals = scales); |
|
|
|
minScale = mins; |
|
maxScale = maxScale; |
|
totals = scales; |
|
|
|
return updated; |
|
} |
|
|
|
int createLevels(const int fh, const int fw) |
|
{ |
|
using namespace device::icf; |
|
std::vector<Level> vlevels; |
|
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1); |
|
|
|
float scale = minScale; |
|
int dcs = 0; |
|
for (int sc = 0; sc < totals; ++sc) |
|
{ |
|
int width = ::std::max(0.0f, fw - (origObjWidth * scale)); |
|
int height = ::std::max(0.0f, fh - (origObjHeight * scale)); |
|
|
|
float logScale = ::log(scale); |
|
int fit = fitOctave(voctaves, logScale); |
|
|
|
Level level(fit, voctaves[fit], scale, width, height); |
|
|
|
if (!width || !height) |
|
break; |
|
else |
|
{ |
|
vlevels.push_back(level); |
|
if (voctaves[fit].scale < 1) ++dcs; |
|
} |
|
|
|
if (::fabs(scale - maxScale) < FLT_EPSILON) break; |
|
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor)); |
|
} |
|
|
|
cv::Mat hlevels = cv::Mat(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) ); |
|
CV_Assert(!hlevels.empty()); |
|
levels.upload(hlevels); |
|
downscales = dcs; |
|
return dcs; |
|
} |
|
|
|
bool update(int fh, int fw, int shr) |
|
{ |
|
if ((fh == luv.rows) && (fw == luv.cols)) return false; |
|
|
|
plane.create(fh * (HOG_LUV_BINS + 1), fw, CV_8UC1); |
|
fplane.create(fh * HOG_BINS, fw, CV_32FC1); |
|
luv.create(fh, fw, CV_8UC3); |
|
|
|
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1); |
|
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1); |
|
|
|
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1); |
|
hogluv.setTo(cv::Scalar::all(0)); |
|
|
|
overlaps.create(1, 5000, CV_8UC1); |
|
|
|
return true; |
|
} |
|
|
|
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds, |
|
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves) |
|
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds) |
|
{ |
|
update(FRAME_HEIGHT, FRAME_WIDTH, shr); |
|
octaves.upload(hoctaves); |
|
stages.upload(hstages); |
|
nodes.upload(hnodes); |
|
leaves.upload(hleaves); |
|
} |
|
|
|
void detect(const cv::gpu::GpuMat& roi, const cv::gpu::GpuMat& count, cv::gpu::GpuMat& objects, const cudaStream_t& stream) const |
|
{ |
|
cudaMemset(count.data, 0, sizeof(Detection)); |
|
cudaSafeCall( cudaGetLastError()); |
|
device::icf::CascadeInvoker<device::icf::GK107PolicyX4> invoker |
|
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, stages, nodes, leaves); |
|
invoker(roi, hogluv, objects, count, downscales, stream); |
|
} |
|
|
|
void preprocess(const cv::gpu::GpuMat& colored, Stream& s) |
|
{ |
|
if (s) |
|
s.enqueueMemSet(plane, 0); |
|
else |
|
cudaMemset(plane.data, 0, plane.step * plane.rows); |
|
|
|
const int fw = colored.cols; |
|
const int fh = colored.rows; |
|
|
|
GpuMat gray(plane, cv::Rect(0, fh * Fields::HOG_LUV_BINS, fw, fh)); |
|
cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY, s); |
|
createHogBins(gray ,s); |
|
|
|
createLuvBins(colored, s); |
|
|
|
integrate(fh, fw, s); |
|
} |
|
|
|
private: |
|
|
|
typedef std::vector<device::icf::Octave>::const_iterator octIt_t; |
|
static int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor) |
|
{ |
|
float minAbsLog = FLT_MAX; |
|
int res = 0; |
|
for (int oct = 0; oct < (int)octs.size(); ++oct) |
|
{ |
|
const device::icf::Octave& octave =octs[oct]; |
|
float logOctave = ::log(octave.scale); |
|
float logAbsScale = ::fabs(logFactor - logOctave); |
|
|
|
if(logAbsScale < minAbsLog) |
|
{ |
|
res = oct; |
|
minAbsLog = logAbsScale; |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
void createHogBins(const cv::gpu::GpuMat& gray, Stream& s) |
|
{ |
|
static const int fw = gray.cols; |
|
static const int fh = gray.rows; |
|
|
|
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh)); |
|
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh)); |
|
|
|
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s); |
|
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s); |
|
|
|
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh)); |
|
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh)); |
|
|
|
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s); |
|
|
|
// normolize magnitude to uchar interval and angles to 6 bins |
|
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh)); |
|
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh)); |
|
|
|
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2))), nmag, 1, -1, s); |
|
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s); |
|
|
|
//create uchar magnitude |
|
GpuMat cmag(plane, cv::Rect(0, fh * Fields::HOG_BINS, fw, fh)); |
|
if (s) |
|
s.enqueueConvert(nmag, cmag, CV_8UC1); |
|
else |
|
nmag.convertTo(cmag, CV_8UC1); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
device::icf::fillBins(plane, nang, fw, fh, Fields::HOG_BINS, stream); |
|
} |
|
|
|
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s) |
|
{ |
|
static const int fw = colored.cols; |
|
static const int fh = colored.rows; |
|
|
|
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s); |
|
|
|
std::vector<GpuMat> splited; |
|
for(int i = 0; i < Fields::LUV_BINS; ++i) |
|
{ |
|
splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh))); |
|
} |
|
|
|
cv::gpu::split(luv, splited, s); |
|
} |
|
|
|
void integrate(const int fh, const int fw, Stream& s) |
|
{ |
|
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Fields::HOG_LUV_BINS)); |
|
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s); |
|
|
|
if (info.majorVersion() < 3) |
|
cv::gpu::integralBuffered(shrunk, hogluv, integralBuffer, s); |
|
else |
|
{ |
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
device::imgproc::shfl_integral_gpu_buffered(shrunk, integralBuffer, hogluv, 12, stream); |
|
} |
|
} |
|
|
|
#include <iostream> |
|
public: |
|
void suppress(GpuMat& ndetections, GpuMat& objects) |
|
{ |
|
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps); |
|
overlaps.setTo(0); |
|
device::icf::suppress(objects, overlaps, ndetections); |
|
// std::cout << cv::Mat(overlaps) << std::endl; |
|
} |
|
|
|
// scales range |
|
float minScale; |
|
float maxScale; |
|
|
|
int totals; |
|
|
|
int origObjWidth; |
|
int origObjHeight; |
|
|
|
const int shrinkage; |
|
int downscales; |
|
|
|
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray |
|
GpuMat plane; |
|
|
|
// preallocated buffer for floating point operations |
|
GpuMat fplane; |
|
|
|
// temporial mat for cvtColor |
|
GpuMat luv; |
|
|
|
// 160x120x10 |
|
GpuMat shrunk; |
|
|
|
// temporial mat for integrall |
|
GpuMat integralBuffer; |
|
|
|
// 161x121x10 |
|
GpuMat hogluv; |
|
|
|
// used for area overlap computing during |
|
GpuMat overlaps; |
|
|
|
// Cascade from xml |
|
GpuMat octaves; |
|
GpuMat stages; |
|
GpuMat nodes; |
|
GpuMat leaves; |
|
GpuMat levels; |
|
|
|
GpuMat sobelBuf; |
|
|
|
GpuMat collected; |
|
|
|
std::vector<device::icf::Octave> voctaves; |
|
|
|
DeviceInfo info; |
|
|
|
enum { BOOST = 0 }; |
|
enum |
|
{ |
|
FRAME_WIDTH = 640, |
|
FRAME_HEIGHT = 480, |
|
HOG_BINS = 6, |
|
LUV_BINS = 3, |
|
HOG_LUV_BINS = 10 |
|
}; |
|
}; |
|
|
|
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int rjf) |
|
: fields(0), minScale(mins), maxScale(maxs), scales(sc), rejCriteria(rjf) {} |
|
|
|
cv::gpu::SCascade::~SCascade() { delete fields; } |
|
|
|
bool cv::gpu::SCascade::load(const FileNode& fn) |
|
{ |
|
if (fields) delete fields; |
|
fields = Fields::parseCascade(fn, minScale, maxScale, scales); |
|
return fields != 0; |
|
} |
|
|
|
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, Stream& s) const |
|
{ |
|
CV_Assert(fields); |
|
|
|
const GpuMat colored = image.getGpuMat(); |
|
|
|
// only color images are supperted |
|
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1); |
|
|
|
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat(); |
|
Fields& flds = *fields; |
|
|
|
if (colored.type() == CV_8UC3) |
|
{ |
|
if (!flds.update(colored.rows, colored.cols, flds.shrinkage) || flds.check(minScale, maxScale, scales)) |
|
flds.createLevels(colored.rows, colored.cols); |
|
flds.preprocess(colored, s); |
|
} |
|
else |
|
{ |
|
colored.copyTo(flds.hogluv); |
|
} |
|
|
|
|
|
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1)); |
|
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1)); |
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
flds.detect(rois, tmp, objects, stream); |
|
|
|
// if (rejCriteria != NO_REJECT) |
|
flds.suppress(tmp, objects); |
|
} |
|
|
|
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask, Stream& stream) const |
|
{ |
|
CV_Assert(fields); |
|
int shr = (*fields).shrinkage; |
|
|
|
const GpuMat roi = _roi.getGpuMat(); |
|
_mask.create( roi.cols / shr, roi.rows / shr, roi.type() ); |
|
GpuMat mask = _mask.getGpuMat(); |
|
cv::gpu::GpuMat tmp; |
|
|
|
cv::gpu::resize(roi, tmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, stream); |
|
cv::gpu::transpose(tmp, mask, stream); |
|
} |
|
|
|
void cv::gpu::SCascade::read(const FileNode& fn) |
|
{ |
|
Algorithm::read(fn); |
|
} |
|
|
|
#endif |