Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

578 lines
20 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <precomp.hpp>
#include <opencv2/highgui/highgui.hpp>
#if !defined (HAVE_CUDA)
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
cv::gpu::SCascade::~SCascade() { throw_nogpu(); }
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); }
void cv::gpu::SCascade::genRoi(InputArray, OutputArray, Stream&) const { throw_nogpu(); }
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
#else
#include <icf.hpp>
cv::gpu::device::icf::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), step(oct.stages), relScale(scale / oct.scale)
{
workRect.x = round(w / (float)oct.shrinkage);
workRect.y = round(h / (float)oct.shrinkage);
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale);
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale);
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
if (fabs(relScale - 1.f) < FLT_EPSILON)
scaling[0] = scaling[1] = 1.f;
else
{
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2)) : 1.f;
scaling[1] = relScale * relScale;
}
}
namespace cv { namespace gpu { namespace device {
namespace icf {
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
const int fw, const int fh, const int bins, cudaStream_t stream);
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections);
}
namespace imgproc {
void shfl_integral_gpu_buffered(PtrStepSzb, PtrStepSz<uint4>, PtrStepSz<unsigned int>, int, cudaStream_t);
template <typename T>
void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy,
PtrStepSzb dst, int interpolation, cudaStream_t stream);
}
}}}
struct cv::gpu::SCascade::Fields
{
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals)
{
static const char *const SC_STAGE_TYPE = "stageType";
static const char *const SC_BOOST = "BOOST";
static const char *const SC_FEATURE_TYPE = "featureType";
static const char *const SC_ICF = "ICF";
// only Ada Boost supported
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
CV_Assert(stageTypeStr == SC_BOOST);
// only HOG-like integral channel features cupported
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
CV_Assert(featureTypeStr == SC_ICF);
static const char *const SC_ORIG_W = "width";
static const char *const SC_ORIG_H = "height";
int origWidth = (int)root[SC_ORIG_W];
int origHeight = (int)root[SC_ORIG_H];
static const char *const SC_OCTAVES = "octaves";
static const char *const SC_STAGES = "stages";
static const char *const SC_FEATURES = "features";
static const char *const SC_WEEK = "weakClassifiers";
static const char *const SC_INTERNAL = "internalNodes";
static const char *const SC_LEAF = "leafValues";
static const char *const SC_OCT_SCALE = "scale";
static const char *const SC_OCT_STAGES = "stageNum";
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
static const char * const SC_F_CHANNEL = "channel";
static const char * const SC_F_RECT = "rect";
FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return false;
using namespace device::icf;
std::vector<Octave> voctaves;
std::vector<float> vstages;
std::vector<Node> vnodes;
std::vector<float> vleaves;
FileNodeIterator it = fn.begin(), it_end = fn.end();
int feature_offset = 0;
ushort octIndex = 0;
ushort shrinkage = 1;
for (; it != it_end; ++it)
{
FileNode fns = *it;
float scale = (float)fns[SC_OCT_SCALE];
bool isUPOctave = scale >= 1;
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
ushort2 size;
size.x = cvRound(origWidth * scale);
size.y = cvRound(origHeight * scale);
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
Octave octave(octIndex, nstages, shrinkage, size, scale);
CV_Assert(octave.stages > 0);
voctaves.push_back(octave);
FileNode ffs = fns[SC_FEATURES];
if (ffs.empty()) return false;
FileNodeIterator ftrs = ffs.begin();
fns = fns[SC_STAGES];
if (fn.empty()) return false;
// for each stage (~ decision tree with H = 2)
FileNodeIterator st = fns.begin(), st_end = fns.end();
for (; st != st_end; ++st )
{
fns = *st;
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
fns = fns[SC_WEEK];
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
for (; ftr != ft_end; ++ftr)
{
fns = (*ftr)[SC_INTERNAL];
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
for (; inIt != inIt_end;)
{
// int feature = (int)(*(inIt +=2)) + feature_offset;
inIt +=3;
// extract feature, Todo:check it
uint th = saturate_cast<uint>((float)(*(inIt++)));
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
cv::FileNodeIterator r_it = ftn.begin();
uchar4 rect;
rect.x = saturate_cast<uchar>((int)*(r_it++));
rect.y = saturate_cast<uchar>((int)*(r_it++));
rect.z = saturate_cast<uchar>((int)*(r_it++));
rect.w = saturate_cast<uchar>((int)*(r_it++));
if (isUPOctave)
{
rect.z -= rect.x;
rect.w -= rect.y;
}
uint channel = saturate_cast<uint>((int)(*ftrs)[SC_F_CHANNEL]);
vnodes.push_back(Node(rect, channel, th));
++ftrs;
}
fns = (*ftr)[SC_LEAF];
inIt = fns.begin(), inIt_end = fns.end();
for (; inIt != inIt_end; ++inIt)
vleaves.push_back((float)(*inIt));
}
}
feature_offset += octave.stages * 3;
++octIndex;
}
cv::Mat hoctaves(1, voctaves.size() * sizeof(Octave), CV_8UC1, (uchar*)&(voctaves[0]));
CV_Assert(!hoctaves.empty());
cv::Mat hstages(cv::Mat(vstages).reshape(1,1));
CV_Assert(!hstages.empty());
cv::Mat hnodes(1, vnodes.size() * sizeof(Node), CV_8UC1, (uchar*)&(vnodes[0]) );
CV_Assert(!hnodes.empty());
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1));
CV_Assert(!hleaves.empty());
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0,
hoctaves, hstages, hnodes, hleaves);
fields->voctaves = voctaves;
fields->createLevels(FRAME_HEIGHT, FRAME_WIDTH);
return fields;
}
bool check(float mins,float maxs, int scales)
{
bool updated = (minScale == mins) || (maxScale == maxs) || (totals = scales);
minScale = mins;
maxScale = maxScale;
totals = scales;
return updated;
}
int createLevels(const int fh, const int fw)
{
using namespace device::icf;
std::vector<Level> vlevels;
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1);
float scale = minScale;
int dcs = 0;
for (int sc = 0; sc < totals; ++sc)
{
int width = ::std::max(0.0f, fw - (origObjWidth * scale));
int height = ::std::max(0.0f, fh - (origObjHeight * scale));
float logScale = ::log(scale);
int fit = fitOctave(voctaves, logScale);
Level level(fit, voctaves[fit], scale, width, height);
if (!width || !height)
break;
else
{
vlevels.push_back(level);
if (voctaves[fit].scale < 1) ++dcs;
}
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
}
cv::Mat hlevels = cv::Mat(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) );
CV_Assert(!hlevels.empty());
levels.upload(hlevels);
downscales = dcs;
return dcs;
}
bool update(int fh, int fw, int shr)
{
if ((fh == luv.rows) && (fw == luv.cols)) return false;
plane.create(fh * (HOG_LUV_BINS + 1), fw, CV_8UC1);
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
luv.create(fh, fw, CV_8UC3);
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1);
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1);
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1);
hogluv.setTo(cv::Scalar::all(0));
overlaps.create(1, 5000, CV_8UC1);
return true;
}
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds,
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves)
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
{
update(FRAME_HEIGHT, FRAME_WIDTH, shr);
octaves.upload(hoctaves);
stages.upload(hstages);
nodes.upload(hnodes);
leaves.upload(hleaves);
}
void detect(const cv::gpu::GpuMat& roi, const cv::gpu::GpuMat& count, cv::gpu::GpuMat& objects, const cudaStream_t& stream) const
{
cudaMemset(count.data, 0, sizeof(Detection));
cudaSafeCall( cudaGetLastError());
device::icf::CascadeInvoker<device::icf::GK107PolicyX4> invoker
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, stages, nodes, leaves);
invoker(roi, hogluv, objects, count, downscales, stream);
}
void preprocess(const cv::gpu::GpuMat& colored, Stream& s)
{
if (s)
s.enqueueMemSet(plane, 0);
else
cudaMemset(plane.data, 0, plane.step * plane.rows);
const int fw = colored.cols;
const int fh = colored.rows;
GpuMat gray(plane, cv::Rect(0, fh * Fields::HOG_LUV_BINS, fw, fh));
cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY, s);
createHogBins(gray ,s);
createLuvBins(colored, s);
integrate(fh, fw, s);
}
private:
typedef std::vector<device::icf::Octave>::const_iterator octIt_t;
static int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor)
{
float minAbsLog = FLT_MAX;
int res = 0;
for (int oct = 0; oct < (int)octs.size(); ++oct)
{
const device::icf::Octave& octave =octs[oct];
float logOctave = ::log(octave.scale);
float logAbsScale = ::fabs(logFactor - logOctave);
if(logAbsScale < minAbsLog)
{
res = oct;
minAbsLog = logAbsScale;
}
}
return res;
}
void createHogBins(const cv::gpu::GpuMat& gray, Stream& s)
{
static const int fw = gray.cols;
static const int fh = gray.rows;
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s);
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s);
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh));
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh));
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s);
// normolize magnitude to uchar interval and angles to 6 bins
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh));
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh));
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2))), nmag, 1, -1, s);
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s);
//create uchar magnitude
GpuMat cmag(plane, cv::Rect(0, fh * Fields::HOG_BINS, fw, fh));
if (s)
s.enqueueConvert(nmag, cmag, CV_8UC1);
else
nmag.convertTo(cmag, CV_8UC1);
cudaStream_t stream = StreamAccessor::getStream(s);
device::icf::fillBins(plane, nang, fw, fh, Fields::HOG_BINS, stream);
}
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s)
{
static const int fw = colored.cols;
static const int fh = colored.rows;
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s);
std::vector<GpuMat> splited;
for(int i = 0; i < Fields::LUV_BINS; ++i)
{
splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh)));
}
cv::gpu::split(luv, splited, s);
}
void integrate(const int fh, const int fw, Stream& s)
{
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Fields::HOG_LUV_BINS));
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s);
if (info.majorVersion() < 3)
cv::gpu::integralBuffered(shrunk, hogluv, integralBuffer, s);
else
{
cudaStream_t stream = StreamAccessor::getStream(s);
device::imgproc::shfl_integral_gpu_buffered(shrunk, integralBuffer, hogluv, 12, stream);
}
}
#include <iostream>
public:
void suppress(GpuMat& ndetections, GpuMat& objects)
{
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps);
overlaps.setTo(0);
device::icf::suppress(objects, overlaps, ndetections);
// std::cout << cv::Mat(overlaps) << std::endl;
}
// scales range
float minScale;
float maxScale;
int totals;
int origObjWidth;
int origObjHeight;
const int shrinkage;
int downscales;
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray
GpuMat plane;
// preallocated buffer for floating point operations
GpuMat fplane;
// temporial mat for cvtColor
GpuMat luv;
// 160x120x10
GpuMat shrunk;
// temporial mat for integrall
GpuMat integralBuffer;
// 161x121x10
GpuMat hogluv;
// used for area overlap computing during
GpuMat overlaps;
// Cascade from xml
GpuMat octaves;
GpuMat stages;
GpuMat nodes;
GpuMat leaves;
GpuMat levels;
GpuMat sobelBuf;
GpuMat collected;
std::vector<device::icf::Octave> voctaves;
DeviceInfo info;
enum { BOOST = 0 };
enum
{
FRAME_WIDTH = 640,
FRAME_HEIGHT = 480,
HOG_BINS = 6,
LUV_BINS = 3,
HOG_LUV_BINS = 10
};
};
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int rjf)
: fields(0), minScale(mins), maxScale(maxs), scales(sc), rejCriteria(rjf) {}
cv::gpu::SCascade::~SCascade() { delete fields; }
bool cv::gpu::SCascade::load(const FileNode& fn)
{
if (fields) delete fields;
fields = Fields::parseCascade(fn, minScale, maxScale, scales);
return fields != 0;
}
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, Stream& s) const
{
CV_Assert(fields);
const GpuMat colored = image.getGpuMat();
// only color images are supperted
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1);
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
Fields& flds = *fields;
if (colored.type() == CV_8UC3)
{
if (!flds.update(colored.rows, colored.cols, flds.shrinkage) || flds.check(minScale, maxScale, scales))
flds.createLevels(colored.rows, colored.cols);
flds.preprocess(colored, s);
}
else
{
colored.copyTo(flds.hogluv);
}
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
cudaStream_t stream = StreamAccessor::getStream(s);
flds.detect(rois, tmp, objects, stream);
// if (rejCriteria != NO_REJECT)
flds.suppress(tmp, objects);
}
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask, Stream& stream) const
{
CV_Assert(fields);
int shr = (*fields).shrinkage;
const GpuMat roi = _roi.getGpuMat();
_mask.create( roi.cols / shr, roi.rows / shr, roi.type() );
GpuMat mask = _mask.getGpuMat();
cv::gpu::GpuMat tmp;
cv::gpu::resize(roi, tmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, stream);
cv::gpu::transpose(tmp, mask, stream);
}
void cv::gpu::SCascade::read(const FileNode& fn)
{
Algorithm::read(fn);
}
#endif