mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
7.5 KiB
198 lines
7.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#ifdef HAVE_OPENCL |
|
namespace |
|
{ |
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// BruteForceMatcher |
|
CV_ENUM(DistType, cv::ocl::BruteForceMatcher_OCL_base::L1Dist,\ |
|
cv::ocl::BruteForceMatcher_OCL_base::L2Dist,\ |
|
cv::ocl::BruteForceMatcher_OCL_base::HammingDist) |
|
IMPLEMENT_PARAM_CLASS(DescriptorSize, int) |
|
PARAM_TEST_CASE(BruteForceMatcher, DistType, DescriptorSize) |
|
{ |
|
cv::ocl::BruteForceMatcher_OCL_base::DistType distType; |
|
int normCode; |
|
int dim; |
|
|
|
int queryDescCount; |
|
int countFactor; |
|
|
|
cv::Mat query, train; |
|
|
|
virtual void SetUp() |
|
{ |
|
distType = (cv::ocl::BruteForceMatcher_OCL_base::DistType)(int)GET_PARAM(0); |
|
dim = GET_PARAM(1); |
|
|
|
queryDescCount = 300; // must be even number because we split train data in some cases in two |
|
countFactor = 4; // do not change it |
|
|
|
cv::RNG &rng = cvtest::TS::ptr()->get_rng(); |
|
|
|
cv::Mat queryBuf, trainBuf; |
|
|
|
// Generate query descriptors randomly. |
|
// Descriptor vector elements are integer values. |
|
queryBuf.create(queryDescCount, dim, CV_32SC1); |
|
rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3)); |
|
queryBuf.convertTo(queryBuf, CV_32FC1); |
|
|
|
// Generate train decriptors as follows: |
|
// copy each query descriptor to train set countFactor times |
|
// and perturb some one element of the copied descriptors in |
|
// in ascending order. General boundaries of the perturbation |
|
// are (0.f, 1.f). |
|
trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1); |
|
float step = 1.f / countFactor; |
|
for (int qIdx = 0; qIdx < queryDescCount; qIdx++) |
|
{ |
|
cv::Mat queryDescriptor = queryBuf.row(qIdx); |
|
for (int c = 0; c < countFactor; c++) |
|
{ |
|
int tIdx = qIdx * countFactor + c; |
|
cv::Mat trainDescriptor = trainBuf.row(tIdx); |
|
queryDescriptor.copyTo(trainDescriptor); |
|
int elem = rng(dim); |
|
float diff = rng.uniform(step * c, step * (c + 1)); |
|
trainDescriptor.at<float>(0, elem) += diff; |
|
} |
|
} |
|
|
|
queryBuf.convertTo(query, CV_32F); |
|
trainBuf.convertTo(train, CV_32F); |
|
} |
|
}; |
|
|
|
TEST_P(BruteForceMatcher, Match_Single) |
|
{ |
|
cv::ocl::BruteForceMatcher_OCL_base matcher(distType); |
|
|
|
std::vector<cv::DMatch> matches; |
|
matcher.match(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
cv::DMatch match = matches[i]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, KnnMatch_2_Single) |
|
{ |
|
const int knn = 2; |
|
|
|
cv::ocl::BruteForceMatcher_OCL_base matcher(distType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.knnMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, knn); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) |
|
localBadCount++; |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, RadiusMatch_Single) |
|
{ |
|
float radius; |
|
if(distType == cv::ocl::BruteForceMatcher_OCL_base::L2Dist) |
|
radius = 1.f / countFactor / countFactor; |
|
else |
|
radius = 1.f / countFactor; |
|
|
|
cv::ocl::BruteForceMatcher_OCL_base matcher(distType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.radiusMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, radius); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != 1) |
|
{ |
|
badCount++; |
|
} |
|
else |
|
{ |
|
cv::DMatch match = matches[i][0]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Features2D, BruteForceMatcher, |
|
testing::Combine( |
|
testing::Values(DistType(cv::ocl::BruteForceMatcher_OCL_base::L1Dist), DistType(cv::ocl::BruteForceMatcher_OCL_base::L2Dist)), |
|
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)))); |
|
|
|
} // namespace |
|
#endif
|
|
|